具有排斥型奇点的李纳方程正周期解的存在性

IF 1.7 4区 数学 Q1 Mathematics
Yu Zhu
{"title":"具有排斥型奇点的李纳方程正周期解的存在性","authors":"Yu Zhu","doi":"10.1186/s13661-024-01894-8","DOIUrl":null,"url":null,"abstract":"In this paper, the existence of positive periodic solutions is studied for Liénard equation with a singularity of repulsive type, $$ x''(t)+f(x(t))x'(t)+\\varphi (t)x^{\\mu}(t)-\\frac{1}{x^{\\gamma}(t)}=e(t), $$ where $f:(0,+\\infty )\\rightarrow R$ is continuous, which may have a singularity at the origin, the sign of $\\varphi (t)$ , $e(t)$ is allowed to change, and μ, γ are positive constants. By using a continuation theorem, as well as the techniques of a priori estimates, we show that this equation has a positive T-periodic solution when $\\mu \\in [0,+\\infty )$ .","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive periodic solutions for Liénard equation with a singularity of repulsive type\",\"authors\":\"Yu Zhu\",\"doi\":\"10.1186/s13661-024-01894-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the existence of positive periodic solutions is studied for Liénard equation with a singularity of repulsive type, $$ x''(t)+f(x(t))x'(t)+\\\\varphi (t)x^{\\\\mu}(t)-\\\\frac{1}{x^{\\\\gamma}(t)}=e(t), $$ where $f:(0,+\\\\infty )\\\\rightarrow R$ is continuous, which may have a singularity at the origin, the sign of $\\\\varphi (t)$ , $e(t)$ is allowed to change, and μ, γ are positive constants. By using a continuation theorem, as well as the techniques of a priori estimates, we show that this equation has a positive T-periodic solution when $\\\\mu \\\\in [0,+\\\\infty )$ .\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01894-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01894-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有排斥型奇点的李纳方程的正周期解的存在性,$$ x''(t)+f(x(t))x'(t)+\varphi (t)x^{\mu}(t)-\frac{1}{x^{\gamma}(t)}=e(t), $$其中$f:(0,+\infty )rightarrowR$是连续的,在原点可能有奇点,$\varphi (t)$, $e(t)$的符号允许改变,μ, γ是正常数。通过使用延续定理以及先验估计技术,我们证明当 $\mu\in [0,+\infty )$ 时,这个方程有一个正 T 周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of positive periodic solutions for Liénard equation with a singularity of repulsive type
In this paper, the existence of positive periodic solutions is studied for Liénard equation with a singularity of repulsive type, $$ x''(t)+f(x(t))x'(t)+\varphi (t)x^{\mu}(t)-\frac{1}{x^{\gamma}(t)}=e(t), $$ where $f:(0,+\infty )\rightarrow R$ is continuous, which may have a singularity at the origin, the sign of $\varphi (t)$ , $e(t)$ is allowed to change, and μ, γ are positive constants. By using a continuation theorem, as well as the techniques of a priori estimates, we show that this equation has a positive T-periodic solution when $\mu \in [0,+\infty )$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信