具有备选猎物的离散捕食者-猎物模型的分岔和稳定性分析

IF 1.9 3区 数学 Q1 MATHEMATICS
Ceyu Lei, Xiaoling Han, Weiming Wang
{"title":"具有备选猎物的离散捕食者-猎物模型的分岔和稳定性分析","authors":"Ceyu Lei, Xiaoling Han, Weiming Wang","doi":"10.1007/s12346-024-01092-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the dynamics of a class of discrete predator–prey model with alternative prey. We prove the boundedness of the solution, the existence and local/global stability of equilibrium points of the model, and verify the existence of flip bifurcation and Neimark-Sacker bifurcation. In addition, we use the maximum Lyapunov exponent and isoperimetric diagrams to verify the existence of periodic structures namely Arnold tongue and the shrimp-shaped structures in bi-parameter spaces of a class of predator–prey model.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bifurcation and Stability Analysis of a Discrete Predator–Prey Model with Alternative Prey\",\"authors\":\"Ceyu Lei, Xiaoling Han, Weiming Wang\",\"doi\":\"10.1007/s12346-024-01092-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the dynamics of a class of discrete predator–prey model with alternative prey. We prove the boundedness of the solution, the existence and local/global stability of equilibrium points of the model, and verify the existence of flip bifurcation and Neimark-Sacker bifurcation. In addition, we use the maximum Lyapunov exponent and isoperimetric diagrams to verify the existence of periodic structures namely Arnold tongue and the shrimp-shaped structures in bi-parameter spaces of a class of predator–prey model.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01092-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01092-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有替代猎物的离散捕食者-猎物模型的动力学。我们证明了解的有界性、模型平衡点的存在性和局部/全局稳定性,并验证了翻转分岔和 Neimark-Sacker 分岔的存在性。此外,我们还利用最大李雅普诺夫指数和等周图验证了一类捕食者-猎物模型的双参数空间中存在周期性结构,即阿诺德舌和虾形结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bifurcation and Stability Analysis of a Discrete Predator–Prey Model with Alternative Prey

Bifurcation and Stability Analysis of a Discrete Predator–Prey Model with Alternative Prey

In this paper, we investigate the dynamics of a class of discrete predator–prey model with alternative prey. We prove the boundedness of the solution, the existence and local/global stability of equilibrium points of the model, and verify the existence of flip bifurcation and Neimark-Sacker bifurcation. In addition, we use the maximum Lyapunov exponent and isoperimetric diagrams to verify the existence of periodic structures namely Arnold tongue and the shrimp-shaped structures in bi-parameter spaces of a class of predator–prey model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信