非参数相对误差回归估计器在有功能预测因子的缺失数据下的强收敛性

Pub Date : 2024-07-07 DOI:10.1007/s42952-024-00275-2
Adel Boucetta, Zohra Guessoum, Elias Ould-Said
{"title":"非参数相对误差回归估计器在有功能预测因子的缺失数据下的强收敛性","authors":"Adel Boucetta, Zohra Guessoum, Elias Ould-Said","doi":"10.1007/s42952-024-00275-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we develop a nonparametric estimator of the regression function for a functional explanatory variable and a scalar response variable that is subject to left truncation and right censoring. The estimator is constructed by minimizing the mean squared relative error, which is a robust criterion that reduces the impact of outliers relatively to the Nadaraya Watson estimator. We prove the pointwise and uniform convergence of the estimator under some regular conditions and assess its performance by a numerical study. We also investigate the robustness of the estimator using the influence function as a measure of sensitivity to outliers and apply the estimator to a real dataset.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong convergence of a nonparametric relative error regression estimator under missing data with functional predictors\",\"authors\":\"Adel Boucetta, Zohra Guessoum, Elias Ould-Said\",\"doi\":\"10.1007/s42952-024-00275-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we develop a nonparametric estimator of the regression function for a functional explanatory variable and a scalar response variable that is subject to left truncation and right censoring. The estimator is constructed by minimizing the mean squared relative error, which is a robust criterion that reduces the impact of outliers relatively to the Nadaraya Watson estimator. We prove the pointwise and uniform convergence of the estimator under some regular conditions and assess its performance by a numerical study. We also investigate the robustness of the estimator using the influence function as a measure of sensitivity to outliers and apply the estimator to a real dataset.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s42952-024-00275-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s42952-024-00275-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为一个函数解释变量和一个标量响应变量的回归函数开发了一个非参数估计器,该回归函数受左截断和右删减的影响。该估计器是通过最小化均方相对误差来构建的,相对于 Nadaraya Watson 估计器,它是一种稳健的标准,能减少异常值的影响。我们证明了估计器在一些常规条件下的点式均匀收敛性,并通过数值研究评估了其性能。我们还利用影响函数作为对异常值敏感度的衡量标准,研究了估计器的稳健性,并将估计器应用于一个真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strong convergence of a nonparametric relative error regression estimator under missing data with functional predictors

分享
查看原文
Strong convergence of a nonparametric relative error regression estimator under missing data with functional predictors

In this paper, we develop a nonparametric estimator of the regression function for a functional explanatory variable and a scalar response variable that is subject to left truncation and right censoring. The estimator is constructed by minimizing the mean squared relative error, which is a robust criterion that reduces the impact of outliers relatively to the Nadaraya Watson estimator. We prove the pointwise and uniform convergence of the estimator under some regular conditions and assess its performance by a numerical study. We also investigate the robustness of the estimator using the influence function as a measure of sensitivity to outliers and apply the estimator to a real dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信