ViCLEVR:用于越南语视觉问题解答的视觉推理数据集和混合多模态融合模型

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Khiem Vinh Tran, Hao Phu Phan, Kiet Van Nguyen, Ngan Luu Thuy Nguyen
{"title":"ViCLEVR:用于越南语视觉问题解答的视觉推理数据集和混合多模态融合模型","authors":"Khiem Vinh Tran, Hao Phu Phan, Kiet Van Nguyen, Ngan Luu Thuy Nguyen","doi":"10.1007/s00530-024-01394-w","DOIUrl":null,"url":null,"abstract":"<p>In recent years, visual question answering (VQA) has gained significant attention for its diverse applications, including intelligent car assistance, aiding visually impaired individuals, and document image information retrieval using natural language queries. VQA requires effective integration of information from questions and images to generate accurate answers. Neural models for VQA have made remarkable progress on large-scale datasets, with a primary focus on resource-rich languages like English. To address this, we introduce the ViCLEVR dataset, a pioneering collection for evaluating various visual reasoning capabilities in Vietnamese while mitigating biases. The dataset comprises over 26,000 images and 30,000 question-answer pairs (QAs), each question annotated to specify the type of reasoning involved. Leveraging this dataset, we conduct a comprehensive analysis of contemporary visual reasoning systems, offering valuable insights into their strengths and limitations. Furthermore, we present PhoVIT, a comprehensive multimodal fusion that identifies objects in images based on questions. The architecture effectively employs transformers to enable simultaneous reasoning over textual and visual data, merging both modalities at an early model stage. The experimental findings demonstrate that our proposed model achieves state-of-the-art performance across four evaluation metrics.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ViCLEVR: a visual reasoning dataset and hybrid multimodal fusion model for visual question answering in Vietnamese\",\"authors\":\"Khiem Vinh Tran, Hao Phu Phan, Kiet Van Nguyen, Ngan Luu Thuy Nguyen\",\"doi\":\"10.1007/s00530-024-01394-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, visual question answering (VQA) has gained significant attention for its diverse applications, including intelligent car assistance, aiding visually impaired individuals, and document image information retrieval using natural language queries. VQA requires effective integration of information from questions and images to generate accurate answers. Neural models for VQA have made remarkable progress on large-scale datasets, with a primary focus on resource-rich languages like English. To address this, we introduce the ViCLEVR dataset, a pioneering collection for evaluating various visual reasoning capabilities in Vietnamese while mitigating biases. The dataset comprises over 26,000 images and 30,000 question-answer pairs (QAs), each question annotated to specify the type of reasoning involved. Leveraging this dataset, we conduct a comprehensive analysis of contemporary visual reasoning systems, offering valuable insights into their strengths and limitations. Furthermore, we present PhoVIT, a comprehensive multimodal fusion that identifies objects in images based on questions. The architecture effectively employs transformers to enable simultaneous reasoning over textual and visual data, merging both modalities at an early model stage. The experimental findings demonstrate that our proposed model achieves state-of-the-art performance across four evaluation metrics.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00530-024-01394-w\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00530-024-01394-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

近年来,视觉问题解答(VQA)因其多样化的应用而备受关注,其中包括智能汽车辅助、视障人士辅助以及使用自然语言查询的文档图像信息检索。VQA 需要有效整合问题和图像信息,以生成准确的答案。用于 VQA 的神经模型在大规模数据集上取得了显著进展,主要集中在英语等资源丰富的语言上。为了解决这个问题,我们引入了 ViCLEVR 数据集,这是一个用于评估越南语中各种视觉推理能力的开创性数据集,同时还能减少偏差。该数据集包含 26,000 多张图片和 30,000 个问题-答案对(QAs),每个问题都标注了具体的推理类型。利用该数据集,我们对当代视觉推理系统进行了全面分析,对其优势和局限性提出了宝贵的见解。此外,我们还介绍了 PhoVIT,这是一种全面的多模态融合系统,可根据问题识别图像中的物体。该架构有效地利用转换器实现了对文本和视觉数据的同步推理,在早期模型阶段就融合了两种模式。实验结果表明,我们提出的模型在四个评估指标上都达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ViCLEVR: a visual reasoning dataset and hybrid multimodal fusion model for visual question answering in Vietnamese

ViCLEVR: a visual reasoning dataset and hybrid multimodal fusion model for visual question answering in Vietnamese

In recent years, visual question answering (VQA) has gained significant attention for its diverse applications, including intelligent car assistance, aiding visually impaired individuals, and document image information retrieval using natural language queries. VQA requires effective integration of information from questions and images to generate accurate answers. Neural models for VQA have made remarkable progress on large-scale datasets, with a primary focus on resource-rich languages like English. To address this, we introduce the ViCLEVR dataset, a pioneering collection for evaluating various visual reasoning capabilities in Vietnamese while mitigating biases. The dataset comprises over 26,000 images and 30,000 question-answer pairs (QAs), each question annotated to specify the type of reasoning involved. Leveraging this dataset, we conduct a comprehensive analysis of contemporary visual reasoning systems, offering valuable insights into their strengths and limitations. Furthermore, we present PhoVIT, a comprehensive multimodal fusion that identifies objects in images based on questions. The architecture effectively employs transformers to enable simultaneous reasoning over textual and visual data, merging both modalities at an early model stage. The experimental findings demonstrate that our proposed model achieves state-of-the-art performance across four evaluation metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信