{"title":"d-t 碰撞产生的 γ 谱建模","authors":"N. K. Timofeyuk, G. W. Bailey, M. R. Gilbert","doi":"10.1103/physrevc.110.014612","DOIUrl":null,"url":null,"abstract":"Motivated by possible industrial fusion applications of spectroscopy of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> rays accompanying <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mtext>−</mtext><mi>t</mi></math> collisions we develop the first model calculations of the minor branching ratio of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi></mrow></math> reaction, <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi><mo>→</mo><mi>α</mi><mo>+</mo><mi>n</mi><mo>+</mo><mi>γ</mi></mrow></math>. The model exploits the most relevant physics feature—spin conservation in electric dipole transitions—which leads to a peculiar mechanism of this reaction: <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> emission via bremsstrahlung from an intermediate <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi><mtext>−</mtext><mi>n</mi></math> state. We highlight that, as a consequence of the bremsstrahlung, the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> spectrum contains nonzero contributions at all energies, thus making inclusive <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mi>t</mi><mspace width=\"0.28em\"></mspace><mi>γ</mi></mrow></math> cross section measurements sensitive to the low-energy cutoff of the detected <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> events. Comparison of our predictions to existing <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi><mo>→</mo><mi>α</mi><mo>+</mo><mi>n</mi><mo>+</mo><mi>γ</mi></mrow></math> measurements in accelerators, employing cutoffs of 13 and 14 MeV, and inertial confinement fusion facilities, with a low-limit cutoff of 0.4 to 10 MeV, suggests a possible contradiction between results from these two types of experiments. Our predictions agree well with accelerator measurements and corroborate the cutoff dependence observed in inertial confinement experiments. These predictions are sensitive to the wave function details inside the short-range area of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi><mtext>−</mtext><mi>n</mi></math> interaction, with uncertainty comparable to that of available experimental data, but become model independent below 4–5 MeV. This part of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> spectrum features a previously unexpected rise, which below 0.5 MeV surpasses the main 17-MeV <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>γ</mi></math> peak in strength. The reactivity of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi><mo>→</mo><mi>α</mi><mo>+</mo><mi>n</mi><mo>+</mo><mi>γ</mi></mrow></math> branch was found to be proportional to its cross section. It strongly depends on the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>d</mi><mtext>−</mtext><mi>t</mi></math> plasma temperature, which opens the possibility of not only total <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi></mrow></math> reactivity measurements but also advanced plasma temperature diagnostics.","PeriodicalId":20122,"journal":{"name":"Physical Review C","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the γ spectrum from d−t collisions\",\"authors\":\"N. K. Timofeyuk, G. W. Bailey, M. R. Gilbert\",\"doi\":\"10.1103/physrevc.110.014612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by possible industrial fusion applications of spectroscopy of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math> rays accompanying <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi><mtext>−</mtext><mi>t</mi></math> collisions we develop the first model calculations of the minor branching ratio of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi></mrow></math> reaction, <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi><mo>→</mo><mi>α</mi><mo>+</mo><mi>n</mi><mo>+</mo><mi>γ</mi></mrow></math>. The model exploits the most relevant physics feature—spin conservation in electric dipole transitions—which leads to a peculiar mechanism of this reaction: <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math> emission via bremsstrahlung from an intermediate <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi><mtext>−</mtext><mi>n</mi></math> state. We highlight that, as a consequence of the bremsstrahlung, the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math> spectrum contains nonzero contributions at all energies, thus making inclusive <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mi>t</mi><mspace width=\\\"0.28em\\\"></mspace><mi>γ</mi></mrow></math> cross section measurements sensitive to the low-energy cutoff of the detected <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math> events. Comparison of our predictions to existing <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi><mo>→</mo><mi>α</mi><mo>+</mo><mi>n</mi><mo>+</mo><mi>γ</mi></mrow></math> measurements in accelerators, employing cutoffs of 13 and 14 MeV, and inertial confinement fusion facilities, with a low-limit cutoff of 0.4 to 10 MeV, suggests a possible contradiction between results from these two types of experiments. Our predictions agree well with accelerator measurements and corroborate the cutoff dependence observed in inertial confinement experiments. These predictions are sensitive to the wave function details inside the short-range area of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>α</mi><mtext>−</mtext><mi>n</mi></math> interaction, with uncertainty comparable to that of available experimental data, but become model independent below 4–5 MeV. This part of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math> spectrum features a previously unexpected rise, which below 0.5 MeV surpasses the main 17-MeV <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>γ</mi></math> peak in strength. The reactivity of the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi><mo>→</mo><mi>α</mi><mo>+</mo><mi>n</mi><mo>+</mo><mi>γ</mi></mrow></math> branch was found to be proportional to its cross section. It strongly depends on the <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mi>d</mi><mtext>−</mtext><mi>t</mi></math> plasma temperature, which opens the possibility of not only total <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mi>d</mi><mo>+</mo><mi>t</mi></mrow></math> reactivity measurements but also advanced plasma temperature diagnostics.\",\"PeriodicalId\":20122,\"journal\":{\"name\":\"Physical Review C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevc.110.014612\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevc.110.014612","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Motivated by possible industrial fusion applications of spectroscopy of the rays accompanying collisions we develop the first model calculations of the minor branching ratio of the reaction, . The model exploits the most relevant physics feature—spin conservation in electric dipole transitions—which leads to a peculiar mechanism of this reaction: emission via bremsstrahlung from an intermediate state. We highlight that, as a consequence of the bremsstrahlung, the spectrum contains nonzero contributions at all energies, thus making inclusive cross section measurements sensitive to the low-energy cutoff of the detected events. Comparison of our predictions to existing measurements in accelerators, employing cutoffs of 13 and 14 MeV, and inertial confinement fusion facilities, with a low-limit cutoff of 0.4 to 10 MeV, suggests a possible contradiction between results from these two types of experiments. Our predictions agree well with accelerator measurements and corroborate the cutoff dependence observed in inertial confinement experiments. These predictions are sensitive to the wave function details inside the short-range area of the interaction, with uncertainty comparable to that of available experimental data, but become model independent below 4–5 MeV. This part of the spectrum features a previously unexpected rise, which below 0.5 MeV surpasses the main 17-MeV peak in strength. The reactivity of the branch was found to be proportional to its cross section. It strongly depends on the plasma temperature, which opens the possibility of not only total reactivity measurements but also advanced plasma temperature diagnostics.
期刊介绍:
Physical Review C (PRC) is a leading journal in theoretical and experimental nuclear physics, publishing more than two-thirds of the research literature in the field.
PRC covers experimental and theoretical results in all aspects of nuclear physics, including:
Nucleon-nucleon interaction, few-body systems
Nuclear structure
Nuclear reactions
Relativistic nuclear collisions
Hadronic physics and QCD
Electroweak interaction, symmetries
Nuclear astrophysics