Pablo A. Arrutia Sota, Matthew A. Fraser, Gregoire Hagmann, Verena Kain, Giulia Papotti, Arthur Spierer, Francesco M. Velotti, Philip N. Burrows, Roberto Piandani
{"title":"用于提高欧洲核子研究中心超级质子同步加速器溢出质量的空桶技术","authors":"Pablo A. Arrutia Sota, Matthew A. Fraser, Gregoire Hagmann, Verena Kain, Giulia Papotti, Arthur Spierer, Francesco M. Velotti, Philip N. Burrows, Roberto Piandani","doi":"10.1103/physrevaccelbeams.27.074001","DOIUrl":null,"url":null,"abstract":"Synchrotrons can provide long spills of particles by employing resonant extraction where the circulating beam is slowly ejected over thousands to millions of turns by exploiting the amplitude growth caused by a transverse resonance. In the CERN Super Proton Synchrotron (SPS), this method is used to satisfy the experimental requests of the North Area. However, the extracted particle flux is modulated by power-converter ripple, an issue shared across all sychrotrons that perform resonant extraction. In order to suppress such modulations, empty-bucket techniques can be employed, which take advantage of chromaticity to quickly accelerate particles into resonant motion by using a longitudinal rf system. This paper explores empty-bucket techniques via theory, simulation, and measurement, providing a systematic characterization with general applicability to any machine. Additionally, the operational implementation in the SPS is detailed, where the impact on the beam profile and extracted intensity is addressed.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":"18 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empty-bucket techniques for spill-quality improvement at the CERN Super Proton Synchrotron\",\"authors\":\"Pablo A. Arrutia Sota, Matthew A. Fraser, Gregoire Hagmann, Verena Kain, Giulia Papotti, Arthur Spierer, Francesco M. Velotti, Philip N. Burrows, Roberto Piandani\",\"doi\":\"10.1103/physrevaccelbeams.27.074001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synchrotrons can provide long spills of particles by employing resonant extraction where the circulating beam is slowly ejected over thousands to millions of turns by exploiting the amplitude growth caused by a transverse resonance. In the CERN Super Proton Synchrotron (SPS), this method is used to satisfy the experimental requests of the North Area. However, the extracted particle flux is modulated by power-converter ripple, an issue shared across all sychrotrons that perform resonant extraction. In order to suppress such modulations, empty-bucket techniques can be employed, which take advantage of chromaticity to quickly accelerate particles into resonant motion by using a longitudinal rf system. This paper explores empty-bucket techniques via theory, simulation, and measurement, providing a systematic characterization with general applicability to any machine. Additionally, the operational implementation in the SPS is detailed, where the impact on the beam profile and extracted intensity is addressed.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.074001\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.074001","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Empty-bucket techniques for spill-quality improvement at the CERN Super Proton Synchrotron
Synchrotrons can provide long spills of particles by employing resonant extraction where the circulating beam is slowly ejected over thousands to millions of turns by exploiting the amplitude growth caused by a transverse resonance. In the CERN Super Proton Synchrotron (SPS), this method is used to satisfy the experimental requests of the North Area. However, the extracted particle flux is modulated by power-converter ripple, an issue shared across all sychrotrons that perform resonant extraction. In order to suppress such modulations, empty-bucket techniques can be employed, which take advantage of chromaticity to quickly accelerate particles into resonant motion by using a longitudinal rf system. This paper explores empty-bucket techniques via theory, simulation, and measurement, providing a systematic characterization with general applicability to any machine. Additionally, the operational implementation in the SPS is detailed, where the impact on the beam profile and extracted intensity is addressed.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.