光束耦合阻抗对蟹腔噪声诱导发射率增长的影响

IF 1.5 3区 物理与天体物理 Q3 PHYSICS, NUCLEAR
N. Triantafyllou, F. Antoniou, H. Bartosik, P. Baudrenghien, X. Buffat, R. Calaga, Y. Papaphilippou, T. Mastoridis, A. Wolski
{"title":"光束耦合阻抗对蟹腔噪声诱导发射率增长的影响","authors":"N. Triantafyllou, F. Antoniou, H. Bartosik, P. Baudrenghien, X. Buffat, R. Calaga, Y. Papaphilippou, T. Mastoridis, A. Wolski","doi":"10.1103/physrevaccelbeams.27.071001","DOIUrl":null,"url":null,"abstract":"Crab cavities will be deployed as a part of the High Luminosity Large Hadron Collider (HL-LHC) upgrade to mitigate the luminosity reduction induced by the crossing angle at the main experiments (ATLAS and CMS). Two prototype crab cavities have been installed in the CERN Super Proton Synchrotron (SPS) in 2018 for studies with proton beams. An issue of concern is the transverse emittance growth induced by noise in the crab cavity radio frequency (rf) system, which is anticipated to limit the performance of the HL-LHC. In measurements conducted in the SPS in 2018, the crab cavity noise-induced emittance growth was measured to be a factor of 4 lower than predicted from the existing analytical models. In this paper, it is shown that the observed discrepancy is explained by damping effects from the beam coupling impedance, which were not included in the models up to now. Using the van Kampen mode approach, a new theory is developed, suggesting that the impedance can separate the coherent tune from the incoherent spectrum leading to an effective reduction of the crab cavity rf noise-induced emittance growth. This mechanism is validated in tracking simulations using the SPS impedance model as well as in dedicated experimental measurements conducted in the SPS in 2022. The implications for the HL-LHC project are discussed.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of beam coupling impedance on crab cavity noise induced emittance growth\",\"authors\":\"N. Triantafyllou, F. Antoniou, H. Bartosik, P. Baudrenghien, X. Buffat, R. Calaga, Y. Papaphilippou, T. Mastoridis, A. Wolski\",\"doi\":\"10.1103/physrevaccelbeams.27.071001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crab cavities will be deployed as a part of the High Luminosity Large Hadron Collider (HL-LHC) upgrade to mitigate the luminosity reduction induced by the crossing angle at the main experiments (ATLAS and CMS). Two prototype crab cavities have been installed in the CERN Super Proton Synchrotron (SPS) in 2018 for studies with proton beams. An issue of concern is the transverse emittance growth induced by noise in the crab cavity radio frequency (rf) system, which is anticipated to limit the performance of the HL-LHC. In measurements conducted in the SPS in 2018, the crab cavity noise-induced emittance growth was measured to be a factor of 4 lower than predicted from the existing analytical models. In this paper, it is shown that the observed discrepancy is explained by damping effects from the beam coupling impedance, which were not included in the models up to now. Using the van Kampen mode approach, a new theory is developed, suggesting that the impedance can separate the coherent tune from the incoherent spectrum leading to an effective reduction of the crab cavity rf noise-induced emittance growth. This mechanism is validated in tracking simulations using the SPS impedance model as well as in dedicated experimental measurements conducted in the SPS in 2022. The implications for the HL-LHC project are discussed.\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.071001\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.071001","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

蟹腔将作为高亮度大型强子对撞机(HL-LHC)升级的一部分进行部署,以缓解主要实验(ATLAS 和 CMS)交叉角引起的亮度降低。2018 年,欧洲核子研究中心超级质子同步加速器(SPS)安装了两个原型蟹腔,用于质子束研究。一个值得关注的问题是蟹腔射频(rf)系统中的噪声引起的横向幅射增长,预计这会限制 HL-LHC 的性能。2018 年在 SPS 进行的测量中,测得蟹腔噪声引起的发射率增长比现有分析模型的预测值低 4 倍。本文表明,观察到的差异是由束流耦合阻抗的阻尼效应造成的,而迄今为止的模型中都没有包括这种效应。利用范坎彭模式方法,本文提出了一种新的理论,认为阻抗可以将相干调谐从非相干频谱中分离出来,从而有效降低蟹腔射频噪声引起的发射增长。这一机制在使用 SPS 阻抗模型进行的跟踪模拟以及 2022 年在 SPS 进行的专门实验测量中得到了验证。讨论了这一机制对 HL-LHC 项目的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Impact of beam coupling impedance on crab cavity noise induced emittance growth

Impact of beam coupling impedance on crab cavity noise induced emittance growth
Crab cavities will be deployed as a part of the High Luminosity Large Hadron Collider (HL-LHC) upgrade to mitigate the luminosity reduction induced by the crossing angle at the main experiments (ATLAS and CMS). Two prototype crab cavities have been installed in the CERN Super Proton Synchrotron (SPS) in 2018 for studies with proton beams. An issue of concern is the transverse emittance growth induced by noise in the crab cavity radio frequency (rf) system, which is anticipated to limit the performance of the HL-LHC. In measurements conducted in the SPS in 2018, the crab cavity noise-induced emittance growth was measured to be a factor of 4 lower than predicted from the existing analytical models. In this paper, it is shown that the observed discrepancy is explained by damping effects from the beam coupling impedance, which were not included in the models up to now. Using the van Kampen mode approach, a new theory is developed, suggesting that the impedance can separate the coherent tune from the incoherent spectrum leading to an effective reduction of the crab cavity rf noise-induced emittance growth. This mechanism is validated in tracking simulations using the SPS impedance model as well as in dedicated experimental measurements conducted in the SPS in 2022. The implications for the HL-LHC project are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Accelerators and Beams
Physical Review Accelerators and Beams Physics and Astronomy-Surfaces and Interfaces
CiteScore
3.90
自引率
23.50%
发文量
158
审稿时长
23 weeks
期刊介绍: Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信