关于存在伯克森式测量误差的三角回归的说明

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Michael T. Gorczyca, Tavish M. McDonald, Justice D. Sefas
{"title":"关于存在伯克森式测量误差的三角回归的说明","authors":"Michael T. Gorczyca, Tavish M. McDonald, Justice D. Sefas","doi":"10.1111/stan.12344","DOIUrl":null,"url":null,"abstract":"In this note, we study how parameter vector estimation for a trigonometric regression model and the expected squared residual error computed from an estimated model are affected by Berkson‐type measurement error. Closed‐form expressions for the parameter vector and the expected squared residual error are obtained by assuming that the observed covariate data are sampled from an equispaced design and that measurement error is generated from a symmetric probability distribution with a mean of zero. Notably, these results indicate that estimates of the amplitude parameters for a trigonometric regression model suffer from attenuation bias when covariate data are mis‐measured, and that estimates of the phase‐shift parameters are unbiased.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"80 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on trigonometric regression in the presence of Berkson‐type measurement error\",\"authors\":\"Michael T. Gorczyca, Tavish M. McDonald, Justice D. Sefas\",\"doi\":\"10.1111/stan.12344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we study how parameter vector estimation for a trigonometric regression model and the expected squared residual error computed from an estimated model are affected by Berkson‐type measurement error. Closed‐form expressions for the parameter vector and the expected squared residual error are obtained by assuming that the observed covariate data are sampled from an equispaced design and that measurement error is generated from a symmetric probability distribution with a mean of zero. Notably, these results indicate that estimates of the amplitude parameters for a trigonometric regression model suffer from attenuation bias when covariate data are mis‐measured, and that estimates of the phase‐shift parameters are unbiased.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12344\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12344","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们将研究三角回归模型的参数向量估计和根据估计模型计算的期望残差平方误差如何受到伯克森型测量误差的影响。假设观测协变量数据是从等距设计中采样的,且测量误差产生于均值为零的对称概率分布,则可得到参数向量和预期残差平方误差的闭式表达式。值得注意的是,这些结果表明,当协变量数据测量错误时,三角回归模型的振幅参数估计会出现衰减偏差,而相移参数的估计值是无偏的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on trigonometric regression in the presence of Berkson‐type measurement error
In this note, we study how parameter vector estimation for a trigonometric regression model and the expected squared residual error computed from an estimated model are affected by Berkson‐type measurement error. Closed‐form expressions for the parameter vector and the expected squared residual error are obtained by assuming that the observed covariate data are sampled from an equispaced design and that measurement error is generated from a symmetric probability distribution with a mean of zero. Notably, these results indicate that estimates of the amplitude parameters for a trigonometric regression model suffer from attenuation bias when covariate data are mis‐measured, and that estimates of the phase‐shift parameters are unbiased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信