评估固定了 rGO/PPy/ ITO-PET 的蓝藻(Nostoc sp.)

IF 2.8 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Pinki Choudhary, Neha Thakur, Sunita Mishra
{"title":"评估固定了 rGO/PPy/ ITO-PET 的蓝藻(Nostoc sp.)","authors":"Pinki Choudhary, Neha Thakur, Sunita Mishra","doi":"10.1007/s10811-024-03305-y","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to develop anode with improved performance for potential use in energy applications, particularly in bio-photovoltaic applications. The study comprises the chemical synthesis of a conducting nanocomposite based on reduced graphene oxide and polypyrrole (rGO/PPy) by incorporating PPy into the rGO sheets along with the addition of an aerogel synthesis phase to improve the composite's overall characteristics. A comparative electrochemical analysis was conducted on cyanobacteria (<i>Nostoc</i> sp.) immobilised ITO-PET and modified rGO/PPy/ITO-PET anodes to investigate the photocurrent output of both. The rGO/PPy nanocomposite was further used to develop a cyanobacteria immobilised biofuel cell anode, and the electrochemical characterization of the fabricated bio-anode (rGO/PPy/ITO-PET) was carried out in a lab-made rudimentary electrochemical cell for the bio-electrocatalytic photolysis of water (light) and oxidation of stored organic matter (night). The results show that the modified bio-anode, for the bio-electrocatalytic reaction in the photo-bio-electrochemical cell configuration, attained a maximum current density of 0.132 mA cm<sup>-2</sup> in light, and 0.069 mA cm<sup>-2</sup> in dark at 0.0 V, and 0.375 mA cm<sup>-2</sup> in light, and 0.207 mA cm<sup>-2 </sup>in dark at an applied voltage of 1.45 V. Therefore, the electrocatalytic photolysis and oxidation of organic materials were accomplished by the proposed bio-anode via the direct electron transfer mechanism. The amperometric photocurrent response of the developed bio-electrode remained relatively stable for approximately 10 days in the rudimentary designed bio-electrochemical cell. The study demonstrates the potential of rGO/PPy/ITO-PET based bio-electrode for possible application in developing the bio-photovoltaic cells for energy generation.</p>","PeriodicalId":15086,"journal":{"name":"Journal of Applied Phycology","volume":"37 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Cyanobacteria (Nostoc sp.) immobilized rGO/PPy/ ITO-PET bio-anode for enhanced electrocatalytic and energy conversion for a Photo-bio-electrochemical cell\",\"authors\":\"Pinki Choudhary, Neha Thakur, Sunita Mishra\",\"doi\":\"10.1007/s10811-024-03305-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aimed to develop anode with improved performance for potential use in energy applications, particularly in bio-photovoltaic applications. The study comprises the chemical synthesis of a conducting nanocomposite based on reduced graphene oxide and polypyrrole (rGO/PPy) by incorporating PPy into the rGO sheets along with the addition of an aerogel synthesis phase to improve the composite's overall characteristics. A comparative electrochemical analysis was conducted on cyanobacteria (<i>Nostoc</i> sp.) immobilised ITO-PET and modified rGO/PPy/ITO-PET anodes to investigate the photocurrent output of both. The rGO/PPy nanocomposite was further used to develop a cyanobacteria immobilised biofuel cell anode, and the electrochemical characterization of the fabricated bio-anode (rGO/PPy/ITO-PET) was carried out in a lab-made rudimentary electrochemical cell for the bio-electrocatalytic photolysis of water (light) and oxidation of stored organic matter (night). The results show that the modified bio-anode, for the bio-electrocatalytic reaction in the photo-bio-electrochemical cell configuration, attained a maximum current density of 0.132 mA cm<sup>-2</sup> in light, and 0.069 mA cm<sup>-2</sup> in dark at 0.0 V, and 0.375 mA cm<sup>-2</sup> in light, and 0.207 mA cm<sup>-2 </sup>in dark at an applied voltage of 1.45 V. Therefore, the electrocatalytic photolysis and oxidation of organic materials were accomplished by the proposed bio-anode via the direct electron transfer mechanism. The amperometric photocurrent response of the developed bio-electrode remained relatively stable for approximately 10 days in the rudimentary designed bio-electrochemical cell. The study demonstrates the potential of rGO/PPy/ITO-PET based bio-electrode for possible application in developing the bio-photovoltaic cells for energy generation.</p>\",\"PeriodicalId\":15086,\"journal\":{\"name\":\"Journal of Applied Phycology\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Phycology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10811-024-03305-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03305-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发性能更佳的阳极,以用于能源应用,特别是生物光伏应用。研究包括通过在还原氧化石墨烯和聚吡咯(rGO/PPy)片材中加入聚吡咯来化学合成导电纳米复合材料,同时加入气凝胶合成阶段以改善复合材料的整体特性。对固定了 ITO-PET 的蓝藻(Nostoc sp.)和改性 rGO/PPy/ITO-PET 阳极进行了比较电化学分析,以研究两者的光电流输出。rGO/PPy 纳米复合材料被进一步用于开发固定蓝藻的生物燃料电池阳极,并在实验室自制的简易电化学电池中对制作的生物阳极(rGO/PPy/ITO-PET)进行了电化学表征,以进行水(光)的生物电催化光解和储存有机物(夜)的氧化。结果表明,在光生物电化学电池配置中进行生物催化反应时,改良生物阳极在 0.0 V 电压下的最大电流密度为 0.132 mA cm-2(光下)和 0.069 mA cm-2(暗处),在 1.45 V 电压下的最大电流密度为 0.375 mA cm-2(光下)和 0.207 mA cm-2(暗处)。在初步设计的生物电化学电池中,所开发的生物电极的安培光电流响应在约 10 天内保持相对稳定。这项研究证明了基于 rGO/PPy/ITO-PET 的生物电极在开发用于能源生产的生物光电池方面的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Evaluation of Cyanobacteria (Nostoc sp.) immobilized rGO/PPy/ ITO-PET bio-anode for enhanced electrocatalytic and energy conversion for a Photo-bio-electrochemical cell

Evaluation of Cyanobacteria (Nostoc sp.) immobilized rGO/PPy/ ITO-PET bio-anode for enhanced electrocatalytic and energy conversion for a Photo-bio-electrochemical cell

This study aimed to develop anode with improved performance for potential use in energy applications, particularly in bio-photovoltaic applications. The study comprises the chemical synthesis of a conducting nanocomposite based on reduced graphene oxide and polypyrrole (rGO/PPy) by incorporating PPy into the rGO sheets along with the addition of an aerogel synthesis phase to improve the composite's overall characteristics. A comparative electrochemical analysis was conducted on cyanobacteria (Nostoc sp.) immobilised ITO-PET and modified rGO/PPy/ITO-PET anodes to investigate the photocurrent output of both. The rGO/PPy nanocomposite was further used to develop a cyanobacteria immobilised biofuel cell anode, and the electrochemical characterization of the fabricated bio-anode (rGO/PPy/ITO-PET) was carried out in a lab-made rudimentary electrochemical cell for the bio-electrocatalytic photolysis of water (light) and oxidation of stored organic matter (night). The results show that the modified bio-anode, for the bio-electrocatalytic reaction in the photo-bio-electrochemical cell configuration, attained a maximum current density of 0.132 mA cm-2 in light, and 0.069 mA cm-2 in dark at 0.0 V, and 0.375 mA cm-2 in light, and 0.207 mA cm-2 in dark at an applied voltage of 1.45 V. Therefore, the electrocatalytic photolysis and oxidation of organic materials were accomplished by the proposed bio-anode via the direct electron transfer mechanism. The amperometric photocurrent response of the developed bio-electrode remained relatively stable for approximately 10 days in the rudimentary designed bio-electrochemical cell. The study demonstrates the potential of rGO/PPy/ITO-PET based bio-electrode for possible application in developing the bio-photovoltaic cells for energy generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Phycology
Journal of Applied Phycology 生物-海洋与淡水生物学
CiteScore
6.80
自引率
9.10%
发文量
212
审稿时长
2.8 months
期刊介绍: The Journal of Applied Phycology publishes work on the rapidly expanding subject of the commercial use of algae. The journal accepts submissions on fundamental research, development of techniques and practical applications in such areas as algal and cyanobacterial biotechnology and genetic engineering, tissues culture, culture collections, commercially useful micro-algae and their products, mariculture, algalization and soil fertility, pollution and fouling, monitoring, toxicity tests, toxic compounds, antibiotics and other biologically active compounds. Each issue of the Journal of Applied Phycology also includes a short section for brief notes and general information on new products, patents and company news.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信