{"title":"论求解线性系统的自适应随机重球动量","authors":"Yun Zeng, Deren Han, Yansheng Su, Jiaxin Xie","doi":"10.1137/23m1575883","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1259-1286, September 2024. <br/> Abstract. The stochastic heavy ball momentum (SHBM) method has gained considerable popularity as a scalable approach for solving large-scale optimization problems. However, one limitation of this method is its reliance on prior knowledge of certain problem parameters, such as singular values of a matrix. In this paper, we propose an adaptive variant of the SHBM method for solving stochastic problems that are reformulated from linear systems using user-defined distributions. Our adaptive SHBM (ASHBM) method utilizes iterative information to update the parameters, addressing an open problem in the literature regarding the adaptive learning of momentum parameters. We prove that our method converges linearly in expectation, with a better convergence bound compared to the basic method. Notably, we demonstrate that the deterministic version of our ASHBM algorithm can be reformulated as a variant of the conjugate gradient (CG) method, inheriting many of its appealing properties, such as finite-time convergence. Consequently, the ASHBM method can be further generalized to develop a brand-new framework of the stochastic CG method for solving linear systems. Our theoretical results are supported by numerical experiments.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"14 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Adaptive Stochastic Heavy Ball Momentum for Solving Linear Systems\",\"authors\":\"Yun Zeng, Deren Han, Yansheng Su, Jiaxin Xie\",\"doi\":\"10.1137/23m1575883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1259-1286, September 2024. <br/> Abstract. The stochastic heavy ball momentum (SHBM) method has gained considerable popularity as a scalable approach for solving large-scale optimization problems. However, one limitation of this method is its reliance on prior knowledge of certain problem parameters, such as singular values of a matrix. In this paper, we propose an adaptive variant of the SHBM method for solving stochastic problems that are reformulated from linear systems using user-defined distributions. Our adaptive SHBM (ASHBM) method utilizes iterative information to update the parameters, addressing an open problem in the literature regarding the adaptive learning of momentum parameters. We prove that our method converges linearly in expectation, with a better convergence bound compared to the basic method. Notably, we demonstrate that the deterministic version of our ASHBM algorithm can be reformulated as a variant of the conjugate gradient (CG) method, inheriting many of its appealing properties, such as finite-time convergence. Consequently, the ASHBM method can be further generalized to develop a brand-new framework of the stochastic CG method for solving linear systems. Our theoretical results are supported by numerical experiments.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1575883\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1575883","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On Adaptive Stochastic Heavy Ball Momentum for Solving Linear Systems
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 3, Page 1259-1286, September 2024. Abstract. The stochastic heavy ball momentum (SHBM) method has gained considerable popularity as a scalable approach for solving large-scale optimization problems. However, one limitation of this method is its reliance on prior knowledge of certain problem parameters, such as singular values of a matrix. In this paper, we propose an adaptive variant of the SHBM method for solving stochastic problems that are reformulated from linear systems using user-defined distributions. Our adaptive SHBM (ASHBM) method utilizes iterative information to update the parameters, addressing an open problem in the literature regarding the adaptive learning of momentum parameters. We prove that our method converges linearly in expectation, with a better convergence bound compared to the basic method. Notably, we demonstrate that the deterministic version of our ASHBM algorithm can be reformulated as a variant of the conjugate gradient (CG) method, inheriting many of its appealing properties, such as finite-time convergence. Consequently, the ASHBM method can be further generalized to develop a brand-new framework of the stochastic CG method for solving linear systems. Our theoretical results are supported by numerical experiments.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.