赫克-基塞尔曼单体的同一性

Pub Date : 2024-07-08 DOI:10.1007/s00233-024-10451-9
Magdalena Wiertel
{"title":"赫克-基塞尔曼单体的同一性","authors":"Magdalena Wiertel","doi":"10.1007/s00233-024-10451-9","DOIUrl":null,"url":null,"abstract":"<p>It is shown that the Hecke–Kiselman monoid <span>\\({\\text {HK}}_{\\Theta }\\)</span> associated to a finite oriented graph <span>\\(\\Theta \\)</span> satisfies a semigroup identity if and only if <span>\\({\\text {HK}}_{\\Theta }\\)</span> does not have free noncommutative subsemigroups. It follows that this happens exactly when the semigroup algebra <span>\\(K[{\\text {HK}}_{\\Theta }]\\)</span> over a field <i>K</i> satisfies a polynomial identity. The latter is equivalent to a condition expressed in terms of the graph <span>\\(\\Theta \\)</span>. The proof allows to derive concrete identities satisfied by such monoids <span>\\({\\text {HK}}_{\\Theta }\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identities of Hecke–Kiselman monoids\",\"authors\":\"Magdalena Wiertel\",\"doi\":\"10.1007/s00233-024-10451-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is shown that the Hecke–Kiselman monoid <span>\\\\({\\\\text {HK}}_{\\\\Theta }\\\\)</span> associated to a finite oriented graph <span>\\\\(\\\\Theta \\\\)</span> satisfies a semigroup identity if and only if <span>\\\\({\\\\text {HK}}_{\\\\Theta }\\\\)</span> does not have free noncommutative subsemigroups. It follows that this happens exactly when the semigroup algebra <span>\\\\(K[{\\\\text {HK}}_{\\\\Theta }]\\\\)</span> over a field <i>K</i> satisfies a polynomial identity. The latter is equivalent to a condition expressed in terms of the graph <span>\\\\(\\\\Theta \\\\)</span>. The proof allows to derive concrete identities satisfied by such monoids <span>\\\\({\\\\text {HK}}_{\\\\Theta }\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10451-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10451-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究表明,当且仅当\({\text {HK}}_{\Theta }\) 没有自由非交换子半群时,与有限定向图\(\Theta \)相关联的赫克-基塞尔曼单体\({\text {HK}}_{\Theta }\) 满足半群同一性。由此可见,当K域上的半群代数\(K[{\text {HK}}_{\Theta }]\)满足多项式同一性时,这种情况就会发生。后者等价于用图形 \(\Theta \) 表示的条件。这个证明可以推导出这种单体 \({\text {HK}}_{\Theta }\) 所满足的具体同一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Identities of Hecke–Kiselman monoids

It is shown that the Hecke–Kiselman monoid \({\text {HK}}_{\Theta }\) associated to a finite oriented graph \(\Theta \) satisfies a semigroup identity if and only if \({\text {HK}}_{\Theta }\) does not have free noncommutative subsemigroups. It follows that this happens exactly when the semigroup algebra \(K[{\text {HK}}_{\Theta }]\) over a field K satisfies a polynomial identity. The latter is equivalent to a condition expressed in terms of the graph \(\Theta \). The proof allows to derive concrete identities satisfied by such monoids \({\text {HK}}_{\Theta }\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信