两组和三组仓本振荡器的完全同步和部分同步

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Shih-Hsin Chen, Chun-Hsiung Hsia, Ting-Yang Hsiao
{"title":"两组和三组仓本振荡器的完全同步和部分同步","authors":"Shih-Hsin Chen, Chun-Hsiung Hsia, Ting-Yang Hsiao","doi":"10.1137/23m1586227","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1720-1765, September 2024. <br/> Abstract.This paper is to investigate synchronization theories of a two-group Kuramoto model and a three-group Kuramoto model. In the settings of these models, every oscillator directly interacts with each other in the same group. In each group, only one oscillator directly interacts with one oscillator in another group. We prove that if the coupling strength is large and the initial configuration of each group is confined to a sector with the arc length less than [math], then all oscillators achieve a complete frequency synchronization asymptotically. We emphasize that there is no need to impose any initial condition on the connection between different groups. If, in addition, the natural frequencies in one group are the same, then partial phase synchronization occurs. Moreover, if all natural frequencies are identical, we prove that all oscillators either achieve a complete phase synchronization asymptotically or tend to a bipolar phase-locking state. We also provide several numerical simulations to support the main results.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"25 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete and Partial Synchronization of Two-Group and Three-Group Kuramoto Oscillators\",\"authors\":\"Shih-Hsin Chen, Chun-Hsiung Hsia, Ting-Yang Hsiao\",\"doi\":\"10.1137/23m1586227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1720-1765, September 2024. <br/> Abstract.This paper is to investigate synchronization theories of a two-group Kuramoto model and a three-group Kuramoto model. In the settings of these models, every oscillator directly interacts with each other in the same group. In each group, only one oscillator directly interacts with one oscillator in another group. We prove that if the coupling strength is large and the initial configuration of each group is confined to a sector with the arc length less than [math], then all oscillators achieve a complete frequency synchronization asymptotically. We emphasize that there is no need to impose any initial condition on the connection between different groups. If, in addition, the natural frequencies in one group are the same, then partial phase synchronization occurs. Moreover, if all natural frequencies are identical, we prove that all oscillators either achieve a complete phase synchronization asymptotically or tend to a bipolar phase-locking state. We also provide several numerical simulations to support the main results.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1586227\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1586227","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统学报,第 23 卷第 3 期,第 1720-1765 页,2024 年 9 月。 摘要:本文主要研究两组仓本模型和三组仓本模型的同步理论。在这些模型的设置中,每个振子在同一组中直接相互作用。在每一组中,只有一个振子与另一组中的一个振子直接相互作用。我们证明,如果耦合强度很大,并且每个振子组的初始配置被限制在一个弧长小于 [math] 的扇形区域内,那么所有振子都会渐近地实现完全的频率同步。我们强调,不同振子组之间的连接无需施加任何初始条件。此外,如果一组振子的固有频率相同,则会出现部分相位同步。此外,如果所有固有频率相同,我们证明所有振荡器要么渐近地实现完全相位同步,要么趋向于双极锁相状态。我们还提供了一些数值模拟来支持主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete and Partial Synchronization of Two-Group and Three-Group Kuramoto Oscillators
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 3, Page 1720-1765, September 2024.
Abstract.This paper is to investigate synchronization theories of a two-group Kuramoto model and a three-group Kuramoto model. In the settings of these models, every oscillator directly interacts with each other in the same group. In each group, only one oscillator directly interacts with one oscillator in another group. We prove that if the coupling strength is large and the initial configuration of each group is confined to a sector with the arc length less than [math], then all oscillators achieve a complete frequency synchronization asymptotically. We emphasize that there is no need to impose any initial condition on the connection between different groups. If, in addition, the natural frequencies in one group are the same, then partial phase synchronization occurs. Moreover, if all natural frequencies are identical, we prove that all oscillators either achieve a complete phase synchronization asymptotically or tend to a bipolar phase-locking state. We also provide several numerical simulations to support the main results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信