{"title":"Ax,3 个用于非周期性平铺平面的多面体","authors":"Vincent Van Dongen, Pierre Gradit","doi":"arxiv-2407.06202","DOIUrl":null,"url":null,"abstract":"How do people come up with new sets of tiles including new tile shapes that\nwould only tile non-periodically? This paper presents our graphical journey in\ntilings and provides a new set of three polyominoes named Ax for its\nrelationship with Ammann A4.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ax, 3 polyominoes for tiling the plane non-periodically\",\"authors\":\"Vincent Van Dongen, Pierre Gradit\",\"doi\":\"arxiv-2407.06202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How do people come up with new sets of tiles including new tile shapes that\\nwould only tile non-periodically? This paper presents our graphical journey in\\ntilings and provides a new set of three polyominoes named Ax for its\\nrelationship with Ammann A4.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ax, 3 polyominoes for tiling the plane non-periodically
How do people come up with new sets of tiles including new tile shapes that
would only tile non-periodically? This paper presents our graphical journey in
tilings and provides a new set of three polyominoes named Ax for its
relationship with Ammann A4.