{"title":"LVM 歧管和 lck 指标","authors":"Bastien Faucard","doi":"10.1007/s00009-024-02696-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we compare two types of complex non-Kähler manifolds: LVM and lck manifolds. First, lck manifolds (for locally conformally Kähler manifolds) admit a metric which is locally conformal to a Kähler metric. On the other side, LVM manifolds (for López de Medrano, Verjovsky and Meersseman) are quotients of an open subset of <span>\\({\\mathbb {C}}^n\\)</span> by an action of <span>\\({\\mathbb {C}}^*\\times {\\mathbb {C}}^m\\)</span>. LVM and lck manifolds have a fundamental common point: Hopf manifolds which are a specific case of LVM manifolds and which admit also lck metric. Therefore, the question of this paper is:</p><blockquote><p>Are LVM manifolds lck ?</p></blockquote><p>We provide some answers to this question. The results obtained are as follows. In the set of all LVM manifolds, there is a dense subset of LVM manifolds which are not lck. And if we consider lck manifolds with potential (whose metric derives from a potential), the diagonal Hopf manifolds are the only LVM manifolds which admit an lck metric with potential. However, we show that there exists an lck covering with potential (non-compact) of a certain subclass of LVM manifolds. Finally, we present some examples.</p>","PeriodicalId":49829,"journal":{"name":"Mediterranean Journal of Mathematics","volume":"53 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LVM Manifolds and lck Metrics\",\"authors\":\"Bastien Faucard\",\"doi\":\"10.1007/s00009-024-02696-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we compare two types of complex non-Kähler manifolds: LVM and lck manifolds. First, lck manifolds (for locally conformally Kähler manifolds) admit a metric which is locally conformal to a Kähler metric. On the other side, LVM manifolds (for López de Medrano, Verjovsky and Meersseman) are quotients of an open subset of <span>\\\\({\\\\mathbb {C}}^n\\\\)</span> by an action of <span>\\\\({\\\\mathbb {C}}^*\\\\times {\\\\mathbb {C}}^m\\\\)</span>. LVM and lck manifolds have a fundamental common point: Hopf manifolds which are a specific case of LVM manifolds and which admit also lck metric. Therefore, the question of this paper is:</p><blockquote><p>Are LVM manifolds lck ?</p></blockquote><p>We provide some answers to this question. The results obtained are as follows. In the set of all LVM manifolds, there is a dense subset of LVM manifolds which are not lck. And if we consider lck manifolds with potential (whose metric derives from a potential), the diagonal Hopf manifolds are the only LVM manifolds which admit an lck metric with potential. However, we show that there exists an lck covering with potential (non-compact) of a certain subclass of LVM manifolds. Finally, we present some examples.</p>\",\"PeriodicalId\":49829,\"journal\":{\"name\":\"Mediterranean Journal of Mathematics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mediterranean Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00009-024-02696-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02696-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we compare two types of complex non-Kähler manifolds: LVM and lck manifolds. First, lck manifolds (for locally conformally Kähler manifolds) admit a metric which is locally conformal to a Kähler metric. On the other side, LVM manifolds (for López de Medrano, Verjovsky and Meersseman) are quotients of an open subset of \({\mathbb {C}}^n\) by an action of \({\mathbb {C}}^*\times {\mathbb {C}}^m\). LVM and lck manifolds have a fundamental common point: Hopf manifolds which are a specific case of LVM manifolds and which admit also lck metric. Therefore, the question of this paper is:
Are LVM manifolds lck ?
We provide some answers to this question. The results obtained are as follows. In the set of all LVM manifolds, there is a dense subset of LVM manifolds which are not lck. And if we consider lck manifolds with potential (whose metric derives from a potential), the diagonal Hopf manifolds are the only LVM manifolds which admit an lck metric with potential. However, we show that there exists an lck covering with potential (non-compact) of a certain subclass of LVM manifolds. Finally, we present some examples.
期刊介绍:
The Mediterranean Journal of Mathematics (MedJM) is a publication issued by the Department of Mathematics of the University of Bari. The new journal replaces the Conferenze del Seminario di Matematica dell’Università di Bari which has been in publication from 1954 until 2003.
The Mediterranean Journal of Mathematics aims to publish original and high-quality peer-reviewed papers containing significant results across all fields of mathematics. The submitted papers should be of medium length (not to exceed 20 printed pages), well-written and appealing to a broad mathematical audience.
In particular, the Mediterranean Journal of Mathematics intends to offer mathematicians from the Mediterranean countries a particular opportunity to circulate the results of their researches in a common journal. Through such a new cultural and scientific stimulus the journal aims to contribute to further integration amongst Mediterranean universities, though it is open to contribution from mathematicians across the world.