{"title":"有源的线性化爱因斯坦方程","authors":"Peter Hintz","doi":"10.1007/s11005-024-01841-9","DOIUrl":null,"url":null,"abstract":"<div><p>On vacuum spacetimes of general dimension, we study the linearized Einstein vacuum equations with a spatially compactly supported and (necessarily) divergence-free source. We prove that the vanishing of appropriate charges of the source, defined in terms of Killing vector fields on the spacetime, is necessary and sufficient for solvability within the class of spatially compactly supported metric perturbations. The proof combines classical results by Moncrief with the solvability theory of the linearized constraint equations with control on supports developed by Corvino–Schoen and Chruściel–Delay.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01841-9.pdf","citationCount":"0","resultStr":"{\"title\":\"The linearized Einstein equations with sources\",\"authors\":\"Peter Hintz\",\"doi\":\"10.1007/s11005-024-01841-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On vacuum spacetimes of general dimension, we study the linearized Einstein vacuum equations with a spatially compactly supported and (necessarily) divergence-free source. We prove that the vanishing of appropriate charges of the source, defined in terms of Killing vector fields on the spacetime, is necessary and sufficient for solvability within the class of spatially compactly supported metric perturbations. The proof combines classical results by Moncrief with the solvability theory of the linearized constraint equations with control on supports developed by Corvino–Schoen and Chruściel–Delay.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-024-01841-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01841-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01841-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
On vacuum spacetimes of general dimension, we study the linearized Einstein vacuum equations with a spatially compactly supported and (necessarily) divergence-free source. We prove that the vanishing of appropriate charges of the source, defined in terms of Killing vector fields on the spacetime, is necessary and sufficient for solvability within the class of spatially compactly supported metric perturbations. The proof combines classical results by Moncrief with the solvability theory of the linearized constraint equations with control on supports developed by Corvino–Schoen and Chruściel–Delay.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.