有源的线性化爱因斯坦方程

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Peter Hintz
{"title":"有源的线性化爱因斯坦方程","authors":"Peter Hintz","doi":"10.1007/s11005-024-01841-9","DOIUrl":null,"url":null,"abstract":"<div><p>On vacuum spacetimes of general dimension, we study the linearized Einstein vacuum equations with a spatially compactly supported and (necessarily) divergence-free source. We prove that the vanishing of appropriate charges of the source, defined in terms of Killing vector fields on the spacetime, is necessary and sufficient for solvability within the class of spatially compactly supported metric perturbations. The proof combines classical results by Moncrief with the solvability theory of the linearized constraint equations with control on supports developed by Corvino–Schoen and Chruściel–Delay.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01841-9.pdf","citationCount":"0","resultStr":"{\"title\":\"The linearized Einstein equations with sources\",\"authors\":\"Peter Hintz\",\"doi\":\"10.1007/s11005-024-01841-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On vacuum spacetimes of general dimension, we study the linearized Einstein vacuum equations with a spatially compactly supported and (necessarily) divergence-free source. We prove that the vanishing of appropriate charges of the source, defined in terms of Killing vector fields on the spacetime, is necessary and sufficient for solvability within the class of spatially compactly supported metric perturbations. The proof combines classical results by Moncrief with the solvability theory of the linearized constraint equations with control on supports developed by Corvino–Schoen and Chruściel–Delay.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11005-024-01841-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01841-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01841-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在一般维度的真空时空中,我们研究了线性化爱因斯坦真空方程与空间紧凑支撑且(必然)无发散源。我们证明,以时空上的基林矢量场定义的源的适当电荷的消失是空间紧凑支撑的度量扰动类中可解性的必要条件和充分条件。这一证明结合了蒙克里夫的经典结果以及科维诺-肖恩(Corvino-Schoen)和克鲁希尔-德雷(Chruściel-Delay)提出的具有支撑控制的线性化约束方程的可解性理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The linearized Einstein equations with sources

On vacuum spacetimes of general dimension, we study the linearized Einstein vacuum equations with a spatially compactly supported and (necessarily) divergence-free source. We prove that the vanishing of appropriate charges of the source, defined in terms of Killing vector fields on the spacetime, is necessary and sufficient for solvability within the class of spatially compactly supported metric perturbations. The proof combines classical results by Moncrief with the solvability theory of the linearized constraint equations with control on supports developed by Corvino–Schoen and Chruściel–Delay.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信