{"title":"量子回归模型中的经验似然变化点检测","authors":"Suthakaran Ratnasingam, Ramadha D. Piyadi Gamage","doi":"10.1007/s00180-024-01526-w","DOIUrl":null,"url":null,"abstract":"<p>Quantile regression is an extension of linear regression which estimates a conditional quantile of interest. In this paper, we propose an empirical likelihood-based non-parametric procedure to detect structural changes in the quantile regression models. Further, we have modified the proposed smoothed empirical likelihood-based method using adjusted smoothed empirical likelihood and transformed smoothed empirical likelihood techniques. We have shown that under the null hypothesis, the limiting distribution of the smoothed empirical likelihood ratio test statistic is identical to that of the classical parametric likelihood. Simulations are conducted to investigate the finite sample properties of the proposed methods. Finally, to demonstrate the effectiveness of the proposed method, it is applied to urinary Glycosaminoglycans (GAGs) data to detect structural changes.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical likelihood change point detection in quantile regression models\",\"authors\":\"Suthakaran Ratnasingam, Ramadha D. Piyadi Gamage\",\"doi\":\"10.1007/s00180-024-01526-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantile regression is an extension of linear regression which estimates a conditional quantile of interest. In this paper, we propose an empirical likelihood-based non-parametric procedure to detect structural changes in the quantile regression models. Further, we have modified the proposed smoothed empirical likelihood-based method using adjusted smoothed empirical likelihood and transformed smoothed empirical likelihood techniques. We have shown that under the null hypothesis, the limiting distribution of the smoothed empirical likelihood ratio test statistic is identical to that of the classical parametric likelihood. Simulations are conducted to investigate the finite sample properties of the proposed methods. Finally, to demonstrate the effectiveness of the proposed method, it is applied to urinary Glycosaminoglycans (GAGs) data to detect structural changes.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01526-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01526-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Empirical likelihood change point detection in quantile regression models
Quantile regression is an extension of linear regression which estimates a conditional quantile of interest. In this paper, we propose an empirical likelihood-based non-parametric procedure to detect structural changes in the quantile regression models. Further, we have modified the proposed smoothed empirical likelihood-based method using adjusted smoothed empirical likelihood and transformed smoothed empirical likelihood techniques. We have shown that under the null hypothesis, the limiting distribution of the smoothed empirical likelihood ratio test statistic is identical to that of the classical parametric likelihood. Simulations are conducted to investigate the finite sample properties of the proposed methods. Finally, to demonstrate the effectiveness of the proposed method, it is applied to urinary Glycosaminoglycans (GAGs) data to detect structural changes.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.