量子回归模型中的经验似然变化点检测

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Suthakaran Ratnasingam, Ramadha D. Piyadi Gamage
{"title":"量子回归模型中的经验似然变化点检测","authors":"Suthakaran Ratnasingam, Ramadha D. Piyadi Gamage","doi":"10.1007/s00180-024-01526-w","DOIUrl":null,"url":null,"abstract":"<p>Quantile regression is an extension of linear regression which estimates a conditional quantile of interest. In this paper, we propose an empirical likelihood-based non-parametric procedure to detect structural changes in the quantile regression models. Further, we have modified the proposed smoothed empirical likelihood-based method using adjusted smoothed empirical likelihood and transformed smoothed empirical likelihood techniques. We have shown that under the null hypothesis, the limiting distribution of the smoothed empirical likelihood ratio test statistic is identical to that of the classical parametric likelihood. Simulations are conducted to investigate the finite sample properties of the proposed methods. Finally, to demonstrate the effectiveness of the proposed method, it is applied to urinary Glycosaminoglycans (GAGs) data to detect structural changes.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"28 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical likelihood change point detection in quantile regression models\",\"authors\":\"Suthakaran Ratnasingam, Ramadha D. Piyadi Gamage\",\"doi\":\"10.1007/s00180-024-01526-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantile regression is an extension of linear regression which estimates a conditional quantile of interest. In this paper, we propose an empirical likelihood-based non-parametric procedure to detect structural changes in the quantile regression models. Further, we have modified the proposed smoothed empirical likelihood-based method using adjusted smoothed empirical likelihood and transformed smoothed empirical likelihood techniques. We have shown that under the null hypothesis, the limiting distribution of the smoothed empirical likelihood ratio test statistic is identical to that of the classical parametric likelihood. Simulations are conducted to investigate the finite sample properties of the proposed methods. Finally, to demonstrate the effectiveness of the proposed method, it is applied to urinary Glycosaminoglycans (GAGs) data to detect structural changes.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01526-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01526-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

量子回归是线性回归的一种扩展,它估计的是感兴趣的条件量子。在本文中,我们提出了一种基于经验似然的非参数程序,用于检测量值回归模型中的结构变化。此外,我们还利用调整平滑经验似然和变换平滑经验似然技术对所提出的基于平滑经验似然的方法进行了改进。我们证明,在零假设下,平滑经验似然比检验统计量的极限分布与经典参数似然的极限分布相同。我们还进行了模拟,以研究拟议方法的有限样本特性。最后,为了证明所提方法的有效性,我们将其应用于尿液糖胺聚糖(GAGs)数据的结构变化检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Empirical likelihood change point detection in quantile regression models

Empirical likelihood change point detection in quantile regression models

Quantile regression is an extension of linear regression which estimates a conditional quantile of interest. In this paper, we propose an empirical likelihood-based non-parametric procedure to detect structural changes in the quantile regression models. Further, we have modified the proposed smoothed empirical likelihood-based method using adjusted smoothed empirical likelihood and transformed smoothed empirical likelihood techniques. We have shown that under the null hypothesis, the limiting distribution of the smoothed empirical likelihood ratio test statistic is identical to that of the classical parametric likelihood. Simulations are conducted to investigate the finite sample properties of the proposed methods. Finally, to demonstrate the effectiveness of the proposed method, it is applied to urinary Glycosaminoglycans (GAGs) data to detect structural changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics
Computational Statistics 数学-统计学与概率论
CiteScore
2.90
自引率
0.00%
发文量
122
审稿时长
>12 weeks
期刊介绍: Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信