{"title":"无负样本知识图谱嵌入","authors":"Adil Bahaj, Mounir Ghogho","doi":"10.1007/s10618-024-01052-9","DOIUrl":null,"url":null,"abstract":"<p>Recently, knowledge graphs (KGs) have been shown to benefit many machine learning applications in multiple domains (e.g. self-driving, agriculture, bio-medicine, recommender systems, etc.). However, KGs suffer from incompleteness, which motivates the task of KG completion which consists of inferring new (unobserved) links between existing entities based on observed links. This task is achieved using either a probabilistic, rule-based, or embedding-based approach. The latter has been shown to consistently outperform the former approaches. It however relies on negative sampling, which supposes that every observed link is “true” and that every unobserved link is “false”. Negative sampling increases the computation complexity of the learning process and introduces noise in the learning. We propose NSF-KGE, a framework for KG embedding that does not require negative sampling, yet achieves performance comparable to that of the negative sampling-based approach. NSF-KGE employs objectives from the non-contrastive self-supervised literature to learn representations that are invariant to relation transformations (e.g. translation, scaling, rotation etc) while avoiding representation collapse.</p>","PeriodicalId":55183,"journal":{"name":"Data Mining and Knowledge Discovery","volume":"14 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Negative-sample-free knowledge graph embedding\",\"authors\":\"Adil Bahaj, Mounir Ghogho\",\"doi\":\"10.1007/s10618-024-01052-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently, knowledge graphs (KGs) have been shown to benefit many machine learning applications in multiple domains (e.g. self-driving, agriculture, bio-medicine, recommender systems, etc.). However, KGs suffer from incompleteness, which motivates the task of KG completion which consists of inferring new (unobserved) links between existing entities based on observed links. This task is achieved using either a probabilistic, rule-based, or embedding-based approach. The latter has been shown to consistently outperform the former approaches. It however relies on negative sampling, which supposes that every observed link is “true” and that every unobserved link is “false”. Negative sampling increases the computation complexity of the learning process and introduces noise in the learning. We propose NSF-KGE, a framework for KG embedding that does not require negative sampling, yet achieves performance comparable to that of the negative sampling-based approach. NSF-KGE employs objectives from the non-contrastive self-supervised literature to learn representations that are invariant to relation transformations (e.g. translation, scaling, rotation etc) while avoiding representation collapse.</p>\",\"PeriodicalId\":55183,\"journal\":{\"name\":\"Data Mining and Knowledge Discovery\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10618-024-01052-9\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Mining and Knowledge Discovery","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10618-024-01052-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
最近,知识图谱(KGs)已被证明有利于多个领域(如自动驾驶、农业、生物医学、推荐系统等)的许多机器学习应用。然而,KGs 存在不完整性,这就需要完成 KG 的任务,即根据观察到的链接推断现有实体之间新的(未观察到的)链接。这项任务可以通过概率、基于规则或基于嵌入的方法来完成。事实证明,后者一直优于前者。不过,后者依赖于负抽样,即假设每个观察到的链接都是 "真 "的,而每个未观察到的链接都是 "假 "的。负抽样增加了学习过程的计算复杂度,并在学习中引入了噪声。我们提出的 NSF-KGE 是一种不需要负采样的 KG 嵌入框架,其性能可与基于负采样的方法相媲美。NSF-KGE 采用了非对比自监督文献中的目标,以学习对关系变换(如平移、缩放、旋转等)不变的表示,同时避免表示崩溃。
Recently, knowledge graphs (KGs) have been shown to benefit many machine learning applications in multiple domains (e.g. self-driving, agriculture, bio-medicine, recommender systems, etc.). However, KGs suffer from incompleteness, which motivates the task of KG completion which consists of inferring new (unobserved) links between existing entities based on observed links. This task is achieved using either a probabilistic, rule-based, or embedding-based approach. The latter has been shown to consistently outperform the former approaches. It however relies on negative sampling, which supposes that every observed link is “true” and that every unobserved link is “false”. Negative sampling increases the computation complexity of the learning process and introduces noise in the learning. We propose NSF-KGE, a framework for KG embedding that does not require negative sampling, yet achieves performance comparable to that of the negative sampling-based approach. NSF-KGE employs objectives from the non-contrastive self-supervised literature to learn representations that are invariant to relation transformations (e.g. translation, scaling, rotation etc) while avoiding representation collapse.
期刊介绍:
Advances in data gathering, storage, and distribution have created a need for computational tools and techniques to aid in data analysis. Data Mining and Knowledge Discovery in Databases (KDD) is a rapidly growing area of research and application that builds on techniques and theories from many fields, including statistics, databases, pattern recognition and learning, data visualization, uncertainty modelling, data warehousing and OLAP, optimization, and high performance computing.