Suncheol Heo, Eun-Ae Kang, Jae Yong Yu, Hae Reong Kim, Suehyun Lee, Kwangsoo Kim, Yul Hwangbo, Rae Woong Park, Hyunah Shin, Kyeongmin Ryu, Chungsoo Kim, Hyojung Jung, Yebin Chegal, Jae-Hyun Lee, Yu Rang Park
{"title":"基于多中心分布式研究网络的急性肾损伤检测时间序列人工智能模型:开发与验证研究","authors":"Suncheol Heo, Eun-Ae Kang, Jae Yong Yu, Hae Reong Kim, Suehyun Lee, Kwangsoo Kim, Yul Hwangbo, Rae Woong Park, Hyunah Shin, Kyeongmin Ryu, Chungsoo Kim, Hyojung Jung, Yebin Chegal, Jae-Hyun Lee, Yu Rang Park","doi":"10.2196/47693","DOIUrl":null,"url":null,"abstract":"Background: Acute kidney injury (AKI) is a marker of clinical deterioration and renal toxicity. While there are many studies offering prediction models for the early detection of AKI, those predicting AKI occurrence using distributed research network (DRN)-based time series data are rare. Objective: In this study, we aimed to detect the early occurrence of AKI by applying the interpretable LSTM-based model on a hospital EHR-based time series in patients who took nephrotoxic drugs using a DRN Methods: We conducted a multi-institutional retrospective cohort study of data from six hospitals using a DRN. For each institution, a patient-based dataset was constructed using five drugs for AKI, and the interpretable multi-variable long short-term memory (IMV-LSTM) model was used for training. This study employed propensity score matching to mitigate differences in demographics and clinical characteristics. Additionally, the temporal attention values of the AKI prediction model's contribution variables were demonstrated for each institution and drug, with differences in highly important feature distributions between the case and control data confirmed using one-way analysis of variance. Results: This study analyzed 8,643 and 31,012 patients with and without AKI, respectively, across six hospitals. When analyzing the distribution of AKI onset, vancomycin showed an earlier onset (median: 12 days), and acyclovir was the slowest compared to the other drugs (median: 23 days). Our temporal deep learning model for AKI prediction performed well for most drugs. Acyclovir had the highest average area under the receiver operating characteristic curve score per drug (0.94), followed by acetaminophen (0.93), vancomycin (0.92), naproxen (0.90), and celecoxib (0.89). Based on the temporal attention values of the variables in the AKI prediction model, verified lymphocytes and calcium had the highest attention, whereas lymphocytes, albumin, and hemoglobin tended to decrease over time, and urine pH and prothrombin time tended to increase. Conclusions: Early surveillance of AKI outbreaks can be achieved by applying the IMV-LSTM based on time series data through hospital electronic health records (EHR)-based DRNs. This approach can help identify risk factors and enable early detection of adverse drug reactions when prescribing drugs that cause renal toxicity before AKI occurs.","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"6 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series AI Model for Acute Kidney Injury Detection Based on a Multicenter Distributed Research Network: Development and Verification Study\",\"authors\":\"Suncheol Heo, Eun-Ae Kang, Jae Yong Yu, Hae Reong Kim, Suehyun Lee, Kwangsoo Kim, Yul Hwangbo, Rae Woong Park, Hyunah Shin, Kyeongmin Ryu, Chungsoo Kim, Hyojung Jung, Yebin Chegal, Jae-Hyun Lee, Yu Rang Park\",\"doi\":\"10.2196/47693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Acute kidney injury (AKI) is a marker of clinical deterioration and renal toxicity. While there are many studies offering prediction models for the early detection of AKI, those predicting AKI occurrence using distributed research network (DRN)-based time series data are rare. Objective: In this study, we aimed to detect the early occurrence of AKI by applying the interpretable LSTM-based model on a hospital EHR-based time series in patients who took nephrotoxic drugs using a DRN Methods: We conducted a multi-institutional retrospective cohort study of data from six hospitals using a DRN. For each institution, a patient-based dataset was constructed using five drugs for AKI, and the interpretable multi-variable long short-term memory (IMV-LSTM) model was used for training. This study employed propensity score matching to mitigate differences in demographics and clinical characteristics. Additionally, the temporal attention values of the AKI prediction model's contribution variables were demonstrated for each institution and drug, with differences in highly important feature distributions between the case and control data confirmed using one-way analysis of variance. Results: This study analyzed 8,643 and 31,012 patients with and without AKI, respectively, across six hospitals. When analyzing the distribution of AKI onset, vancomycin showed an earlier onset (median: 12 days), and acyclovir was the slowest compared to the other drugs (median: 23 days). Our temporal deep learning model for AKI prediction performed well for most drugs. Acyclovir had the highest average area under the receiver operating characteristic curve score per drug (0.94), followed by acetaminophen (0.93), vancomycin (0.92), naproxen (0.90), and celecoxib (0.89). Based on the temporal attention values of the variables in the AKI prediction model, verified lymphocytes and calcium had the highest attention, whereas lymphocytes, albumin, and hemoglobin tended to decrease over time, and urine pH and prothrombin time tended to increase. Conclusions: Early surveillance of AKI outbreaks can be achieved by applying the IMV-LSTM based on time series data through hospital electronic health records (EHR)-based DRNs. This approach can help identify risk factors and enable early detection of adverse drug reactions when prescribing drugs that cause renal toxicity before AKI occurs.\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/47693\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/47693","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
摘要
背景:急性肾损伤(AKI)是临床恶化和肾毒性的标志。虽然有许多研究提供了早期检测 AKI 的预测模型,但利用基于分布式研究网络(DRN)的时间序列数据预测 AKI 发生率的研究却很少见。研究目的在本研究中,我们的目的是通过在使用 DRN 的服用肾毒性药物患者的医院电子病历时间序列中应用基于 LSTM 的可解释模型来检测 AKI 的早期发生:我们对六家使用 DRN 的医院的数据进行了多机构回顾性队列研究。我们为每家医院构建了一个基于患者的数据集,其中使用了五种治疗 AKI 的药物,并使用可解释多变量长短期记忆(IMV-LSTM)模型进行训练。本研究采用倾向得分匹配来减少人口统计学和临床特征的差异。此外,AKI 预测模型的贡献变量的时间注意力值在每个机构和药物中都得到了证明,病例数据和对照数据之间的高重要性特征分布差异也通过单因素方差分析得到了证实。研究结果本研究分析了六家医院的 8643 名 AKI 患者和 31012 名无 AKI 患者。在分析 AKI 发病时间分布时,万古霉素的发病时间较早(中位数:12 天),而阿昔洛韦的发病时间与其他药物相比最慢(中位数:23 天)。我们用于预测 AKI 的时空深度学习模型对大多数药物都表现良好。阿昔洛韦的每种药物接收者操作特征曲线下的平均面积得分最高(0.94),其次是对乙酰氨基酚(0.93)、万古霉素(0.92)、萘普生(0.90)和塞来昔布(0.89)。根据 AKI 预测模型中各变量的时间关注值,经核实的淋巴细胞和钙的关注度最高,而淋巴细胞、白蛋白和血红蛋白随着时间的推移呈下降趋势,尿 pH 值和凝血酶原时间呈上升趋势。结论:通过基于医院电子病历 (EHR) 的 DRN,基于时间序列数据应用 IMV-LSTM 可实现对 AKI 爆发的早期监控。这种方法有助于识别风险因素,并在发生 AKI 之前,在处方会引起肾毒性的药物时,及早发现药物不良反应。
Time Series AI Model for Acute Kidney Injury Detection Based on a Multicenter Distributed Research Network: Development and Verification Study
Background: Acute kidney injury (AKI) is a marker of clinical deterioration and renal toxicity. While there are many studies offering prediction models for the early detection of AKI, those predicting AKI occurrence using distributed research network (DRN)-based time series data are rare. Objective: In this study, we aimed to detect the early occurrence of AKI by applying the interpretable LSTM-based model on a hospital EHR-based time series in patients who took nephrotoxic drugs using a DRN Methods: We conducted a multi-institutional retrospective cohort study of data from six hospitals using a DRN. For each institution, a patient-based dataset was constructed using five drugs for AKI, and the interpretable multi-variable long short-term memory (IMV-LSTM) model was used for training. This study employed propensity score matching to mitigate differences in demographics and clinical characteristics. Additionally, the temporal attention values of the AKI prediction model's contribution variables were demonstrated for each institution and drug, with differences in highly important feature distributions between the case and control data confirmed using one-way analysis of variance. Results: This study analyzed 8,643 and 31,012 patients with and without AKI, respectively, across six hospitals. When analyzing the distribution of AKI onset, vancomycin showed an earlier onset (median: 12 days), and acyclovir was the slowest compared to the other drugs (median: 23 days). Our temporal deep learning model for AKI prediction performed well for most drugs. Acyclovir had the highest average area under the receiver operating characteristic curve score per drug (0.94), followed by acetaminophen (0.93), vancomycin (0.92), naproxen (0.90), and celecoxib (0.89). Based on the temporal attention values of the variables in the AKI prediction model, verified lymphocytes and calcium had the highest attention, whereas lymphocytes, albumin, and hemoglobin tended to decrease over time, and urine pH and prothrombin time tended to increase. Conclusions: Early surveillance of AKI outbreaks can be achieved by applying the IMV-LSTM based on time series data through hospital electronic health records (EHR)-based DRNs. This approach can help identify risk factors and enable early detection of adverse drug reactions when prescribing drugs that cause renal toxicity before AKI occurs.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.