Wong Min Jin Karen, Peter Advent Stephen, Zhipeng Wang, Bih Lii Chua, Willey Y. H. Liew, G. J. H. Melvin
{"title":"用于海水淡化的太阳能蒸馏器中以碳化锯末为基础的太阳能吸收器","authors":"Wong Min Jin Karen, Peter Advent Stephen, Zhipeng Wang, Bih Lii Chua, Willey Y. H. Liew, G. J. H. Melvin","doi":"10.1002/ep.14449","DOIUrl":null,"url":null,"abstract":"<p>Current industrial technologies for seawater desalination involve high cost and energy consumption, that is, distillation and reverse osmosis, where these technologies are difficult to implement especially in developing countries. A cost-effective, environmental-friendly, and sustainable technology is essential in providing alternative methods for generation of clean water. Solar vapor generation is one of the potential green technologies in generating clean water, where the production and collection of clean water is made possible by using a solar absorber in a solar still. The practicality and performance of the carbonized sawdust based solar absorber in a solar still for the seawater desalination towards clean water generation was conducted outdoors with gradual enhancement on the solar still setup. The enhanced solar still with reflective surface and external thermal insulator improved the solar absorber performance, in contrast to the evaporation of the bulk seawater only and using solar absorber in the solar still without any enhancement. The average efficiency and evaporation rate of the solar absorber in the enhanced solar still was recorded at 61.5% and 0.98 kg m<sup>−2</sup> h<sup>−1</sup>, respectively. The pH (7.52) and salinity (10 ppm) of the collected clean water meets the standard of safe water by the World Health Organization.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonized sawdust based solar absorber in a solar still for seawater desalination\",\"authors\":\"Wong Min Jin Karen, Peter Advent Stephen, Zhipeng Wang, Bih Lii Chua, Willey Y. H. Liew, G. J. H. Melvin\",\"doi\":\"10.1002/ep.14449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current industrial technologies for seawater desalination involve high cost and energy consumption, that is, distillation and reverse osmosis, where these technologies are difficult to implement especially in developing countries. A cost-effective, environmental-friendly, and sustainable technology is essential in providing alternative methods for generation of clean water. Solar vapor generation is one of the potential green technologies in generating clean water, where the production and collection of clean water is made possible by using a solar absorber in a solar still. The practicality and performance of the carbonized sawdust based solar absorber in a solar still for the seawater desalination towards clean water generation was conducted outdoors with gradual enhancement on the solar still setup. The enhanced solar still with reflective surface and external thermal insulator improved the solar absorber performance, in contrast to the evaporation of the bulk seawater only and using solar absorber in the solar still without any enhancement. The average efficiency and evaporation rate of the solar absorber in the enhanced solar still was recorded at 61.5% and 0.98 kg m<sup>−2</sup> h<sup>−1</sup>, respectively. The pH (7.52) and salinity (10 ppm) of the collected clean water meets the standard of safe water by the World Health Organization.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
目前的海水淡化工业技术(即蒸馏和反渗透)成本高、能耗大,尤其是在发展中国家难以实施。成本效益高、环境友好和可持续的技术对于提供生产清洁水的替代方法至关重要。太阳能蒸气发电是生产清洁水的潜在绿色技术之一,通过在太阳能蒸馏器中使用太阳能吸收器,可以生产和收集清洁水。在室外进行了基于碳化锯屑的太阳能吸收器的实用性和性能研究,该吸收器用于海水淡化以产生清洁水,并对太阳能蒸发器的设置进行了逐步改进。与仅蒸发散装海水和在太阳能蒸馏器中使用太阳能吸收器而不做任何改进相比,带有反射面和外部隔热材料的增强型太阳能蒸馏器提高了太阳能吸收器的性能。增强型太阳能蒸馏器中太阳能吸收器的平均效率和蒸发率分别为 61.5% 和 0.98 kg m-2 h-1。收集的净水的 pH 值(7.52)和盐度(10 ppm)符合世界卫生组织的安全用水标准。
Carbonized sawdust based solar absorber in a solar still for seawater desalination
Current industrial technologies for seawater desalination involve high cost and energy consumption, that is, distillation and reverse osmosis, where these technologies are difficult to implement especially in developing countries. A cost-effective, environmental-friendly, and sustainable technology is essential in providing alternative methods for generation of clean water. Solar vapor generation is one of the potential green technologies in generating clean water, where the production and collection of clean water is made possible by using a solar absorber in a solar still. The practicality and performance of the carbonized sawdust based solar absorber in a solar still for the seawater desalination towards clean water generation was conducted outdoors with gradual enhancement on the solar still setup. The enhanced solar still with reflective surface and external thermal insulator improved the solar absorber performance, in contrast to the evaporation of the bulk seawater only and using solar absorber in the solar still without any enhancement. The average efficiency and evaporation rate of the solar absorber in the enhanced solar still was recorded at 61.5% and 0.98 kg m−2 h−1, respectively. The pH (7.52) and salinity (10 ppm) of the collected clean water meets the standard of safe water by the World Health Organization.