{"title":"涉及正交函数的拉盖尔算子的限制定理和斯特里查兹不等式","authors":"Guoxia Feng, Manli Song","doi":"10.1007/s12220-024-01740-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove restriction theorems for the Fourier–Laguerre transform and establish Strichartz estimates for the Schrödinger propagator <span>\\(e^{-itL_\\alpha }\\)</span> for the Laguerre operator <span>\\(L_\\alpha =-\\Delta -\\sum _{j=1}^{n}(\\dfrac{2\\alpha _j+1}{x_j}\\dfrac{\\partial }{\\partial x_j})+\\dfrac{|x|^2}{4}\\)</span>, <span>\\(\\alpha =(\\alpha _1,\\alpha _2,\\ldots ,\\alpha _n)\\in {(-\\frac{1}{2},\\infty )^n}\\)</span> on <span>\\(\\mathbb {R}_+^n\\)</span> involving systems of orthonormal functions. The proof is based on a combination of some known dispersive estimate and the argument in Nakamura [Trans Am Math Soc 373(2), 1455–1476 (2020)] on torus. As an application, we obtain the global well-posedness for the nonlinear Laguerre–Hartree equation in Schatten space.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restriction Theorems and Strichartz Inequalities for the Laguerre Operator Involving Orthonormal Functions\",\"authors\":\"Guoxia Feng, Manli Song\",\"doi\":\"10.1007/s12220-024-01740-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove restriction theorems for the Fourier–Laguerre transform and establish Strichartz estimates for the Schrödinger propagator <span>\\\\(e^{-itL_\\\\alpha }\\\\)</span> for the Laguerre operator <span>\\\\(L_\\\\alpha =-\\\\Delta -\\\\sum _{j=1}^{n}(\\\\dfrac{2\\\\alpha _j+1}{x_j}\\\\dfrac{\\\\partial }{\\\\partial x_j})+\\\\dfrac{|x|^2}{4}\\\\)</span>, <span>\\\\(\\\\alpha =(\\\\alpha _1,\\\\alpha _2,\\\\ldots ,\\\\alpha _n)\\\\in {(-\\\\frac{1}{2},\\\\infty )^n}\\\\)</span> on <span>\\\\(\\\\mathbb {R}_+^n\\\\)</span> involving systems of orthonormal functions. The proof is based on a combination of some known dispersive estimate and the argument in Nakamura [Trans Am Math Soc 373(2), 1455–1476 (2020)] on torus. As an application, we obtain the global well-posedness for the nonlinear Laguerre–Hartree equation in Schatten space.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01740-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01740-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中我们证明了傅立叶-拉盖尔变换的限制定理,并建立了薛定谔传播者(e^{-itL_\alpha }\) 的拉盖尔算子 \(L_\alpha =-\Delta -\sum _{j=1}^{n}(\dfrac{2\alpha _j+1}{x_j}\dfrac{partial }{partial x_j})+\dfrac{|x|^2}{4}\)、\(\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _n)\in {(-\frac{1}{2},\infty )^n}\) on \(\mathbb {R}_+^n\) involving systems of orthonormal functions.证明基于一些已知的分散估计和中村 [Trans Am Math Soc 373(2), 1455-1476 (2020)] 在环上的论证。作为应用,我们得到了沙腾空间中非线性拉盖尔-哈特里方程的全局好求性。
Restriction Theorems and Strichartz Inequalities for the Laguerre Operator Involving Orthonormal Functions
In this paper, we prove restriction theorems for the Fourier–Laguerre transform and establish Strichartz estimates for the Schrödinger propagator \(e^{-itL_\alpha }\) for the Laguerre operator \(L_\alpha =-\Delta -\sum _{j=1}^{n}(\dfrac{2\alpha _j+1}{x_j}\dfrac{\partial }{\partial x_j})+\dfrac{|x|^2}{4}\), \(\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _n)\in {(-\frac{1}{2},\infty )^n}\) on \(\mathbb {R}_+^n\) involving systems of orthonormal functions. The proof is based on a combination of some known dispersive estimate and the argument in Nakamura [Trans Am Math Soc 373(2), 1455–1476 (2020)] on torus. As an application, we obtain the global well-posedness for the nonlinear Laguerre–Hartree equation in Schatten space.