涉及正交函数的拉盖尔算子的限制定理和斯特里查兹不等式

Guoxia Feng, Manli Song
{"title":"涉及正交函数的拉盖尔算子的限制定理和斯特里查兹不等式","authors":"Guoxia Feng, Manli Song","doi":"10.1007/s12220-024-01740-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove restriction theorems for the Fourier–Laguerre transform and establish Strichartz estimates for the Schrödinger propagator <span>\\(e^{-itL_\\alpha }\\)</span> for the Laguerre operator <span>\\(L_\\alpha =-\\Delta -\\sum _{j=1}^{n}(\\dfrac{2\\alpha _j+1}{x_j}\\dfrac{\\partial }{\\partial x_j})+\\dfrac{|x|^2}{4}\\)</span>, <span>\\(\\alpha =(\\alpha _1,\\alpha _2,\\ldots ,\\alpha _n)\\in {(-\\frac{1}{2},\\infty )^n}\\)</span> on <span>\\(\\mathbb {R}_+^n\\)</span> involving systems of orthonormal functions. The proof is based on a combination of some known dispersive estimate and the argument in Nakamura [Trans Am Math Soc 373(2), 1455–1476 (2020)] on torus. As an application, we obtain the global well-posedness for the nonlinear Laguerre–Hartree equation in Schatten space.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restriction Theorems and Strichartz Inequalities for the Laguerre Operator Involving Orthonormal Functions\",\"authors\":\"Guoxia Feng, Manli Song\",\"doi\":\"10.1007/s12220-024-01740-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove restriction theorems for the Fourier–Laguerre transform and establish Strichartz estimates for the Schrödinger propagator <span>\\\\(e^{-itL_\\\\alpha }\\\\)</span> for the Laguerre operator <span>\\\\(L_\\\\alpha =-\\\\Delta -\\\\sum _{j=1}^{n}(\\\\dfrac{2\\\\alpha _j+1}{x_j}\\\\dfrac{\\\\partial }{\\\\partial x_j})+\\\\dfrac{|x|^2}{4}\\\\)</span>, <span>\\\\(\\\\alpha =(\\\\alpha _1,\\\\alpha _2,\\\\ldots ,\\\\alpha _n)\\\\in {(-\\\\frac{1}{2},\\\\infty )^n}\\\\)</span> on <span>\\\\(\\\\mathbb {R}_+^n\\\\)</span> involving systems of orthonormal functions. The proof is based on a combination of some known dispersive estimate and the argument in Nakamura [Trans Am Math Soc 373(2), 1455–1476 (2020)] on torus. As an application, we obtain the global well-posedness for the nonlinear Laguerre–Hartree equation in Schatten space.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01740-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01740-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中我们证明了傅立叶-拉盖尔变换的限制定理,并建立了薛定谔传播者(e^{-itL_\alpha }\) 的拉盖尔算子 \(L_\alpha =-\Delta -\sum _{j=1}^{n}(\dfrac{2\alpha _j+1}{x_j}\dfrac{partial }{partial x_j})+\dfrac{|x|^2}{4}\)、\(\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _n)\in {(-\frac{1}{2},\infty )^n}\) on \(\mathbb {R}_+^n\) involving systems of orthonormal functions.证明基于一些已知的分散估计和中村 [Trans Am Math Soc 373(2), 1455-1476 (2020)] 在环上的论证。作为应用,我们得到了沙腾空间中非线性拉盖尔-哈特里方程的全局好求性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restriction Theorems and Strichartz Inequalities for the Laguerre Operator Involving Orthonormal Functions

In this paper, we prove restriction theorems for the Fourier–Laguerre transform and establish Strichartz estimates for the Schrödinger propagator \(e^{-itL_\alpha }\) for the Laguerre operator \(L_\alpha =-\Delta -\sum _{j=1}^{n}(\dfrac{2\alpha _j+1}{x_j}\dfrac{\partial }{\partial x_j})+\dfrac{|x|^2}{4}\), \(\alpha =(\alpha _1,\alpha _2,\ldots ,\alpha _n)\in {(-\frac{1}{2},\infty )^n}\) on \(\mathbb {R}_+^n\) involving systems of orthonormal functions. The proof is based on a combination of some known dispersive estimate and the argument in Nakamura [Trans Am Math Soc 373(2), 1455–1476 (2020)] on torus. As an application, we obtain the global well-posedness for the nonlinear Laguerre–Hartree equation in Schatten space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信