通过 $$L^2$$ -最优条件对具有空薄互补性的 $$L^2$$ -全形域的新表征

Zhuo Liu, Xujun Zhang
{"title":"通过 $$L^2$$ -最优条件对具有空薄互补性的 $$L^2$$ -全形域的新表征","authors":"Zhuo Liu, Xujun Zhang","doi":"10.1007/s12220-024-01738-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show that the <span>\\(L^2\\)</span>-optimal condition implies the <span>\\(L^2\\)</span>-divisibility of <span>\\(L^2\\)</span>-integrable holomorphic functions. As an application, we offer a new characterization of bounded <span>\\(L^2\\)</span>-domains of holomorphy with null thin complements using the <span>\\(L^2\\)</span>-optimal condition, which appears to be advantageous in addressing a problem proposed by Deng-Ning-Wang. Through this characterization, we show that a domain in a Stein manifold with a null thin complement, admitting an exhaustion of complete Kähler domains, remains Stein. By the way, we construct an <span>\\(L^2\\)</span>-optimal domain that does not admit any complete Kähler metric.</p>","PeriodicalId":501200,"journal":{"name":"The Journal of Geometric Analysis","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Characterization of $$L^2$$ -Domains of Holomorphy with Null Thin Complements via $$L^2$$ -Optimal Conditions\",\"authors\":\"Zhuo Liu, Xujun Zhang\",\"doi\":\"10.1007/s12220-024-01738-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show that the <span>\\\\(L^2\\\\)</span>-optimal condition implies the <span>\\\\(L^2\\\\)</span>-divisibility of <span>\\\\(L^2\\\\)</span>-integrable holomorphic functions. As an application, we offer a new characterization of bounded <span>\\\\(L^2\\\\)</span>-domains of holomorphy with null thin complements using the <span>\\\\(L^2\\\\)</span>-optimal condition, which appears to be advantageous in addressing a problem proposed by Deng-Ning-Wang. Through this characterization, we show that a domain in a Stein manifold with a null thin complement, admitting an exhaustion of complete Kähler domains, remains Stein. By the way, we construct an <span>\\\\(L^2\\\\)</span>-optimal domain that does not admit any complete Kähler metric.</p>\",\"PeriodicalId\":501200,\"journal\":{\"name\":\"The Journal of Geometric Analysis\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Geometric Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12220-024-01738-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Geometric Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12220-024-01738-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了 \(L^2\)-optimal 条件意味着 \(L^2\)-integrable holomorphic functions 的 \(L^2\)-divisibility.作为一个应用,我们利用\(L^2\)-最优条件为具有空薄补的有界\(L^2\)-全形域提供了一个新的特征,这在解决王登宁提出的一个问题上似乎是有利的。通过这一表征,我们证明了斯坦流形中具有空薄补的域,在容许穷尽完全凯勒域的情况下,仍然是斯坦的。顺便说一下,我们构造了一个不接受任何完整凯勒度量的(L^2\)最优域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Characterization of $$L^2$$ -Domains of Holomorphy with Null Thin Complements via $$L^2$$ -Optimal Conditions

In this paper, we show that the \(L^2\)-optimal condition implies the \(L^2\)-divisibility of \(L^2\)-integrable holomorphic functions. As an application, we offer a new characterization of bounded \(L^2\)-domains of holomorphy with null thin complements using the \(L^2\)-optimal condition, which appears to be advantageous in addressing a problem proposed by Deng-Ning-Wang. Through this characterization, we show that a domain in a Stein manifold with a null thin complement, admitting an exhaustion of complete Kähler domains, remains Stein. By the way, we construct an \(L^2\)-optimal domain that does not admit any complete Kähler metric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信