{"title":"具有 $L^1$$ 数据的非线性椭圆 Neumann 问题的有限体积方案和重规范化解","authors":"Mirella Aoun, Olivier Guibé","doi":"10.1007/s10092-024-00602-3","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and <span>\\(L^1\\)</span> data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result. We present also some numerical experiments in dimension 2 to illustrate the rate of convergence.</p>","PeriodicalId":9522,"journal":{"name":"Calcolo","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with $$L^1$$ data\",\"authors\":\"Mirella Aoun, Olivier Guibé\",\"doi\":\"10.1007/s10092-024-00602-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and <span>\\\\(L^1\\\\)</span> data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result. We present also some numerical experiments in dimension 2 to illustrate the rate of convergence.</p>\",\"PeriodicalId\":9522,\"journal\":{\"name\":\"Calcolo\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calcolo\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10092-024-00602-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calcolo","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00602-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with $$L^1$$ data
In this paper we study the convergence of a finite volume approximation of a convective diffusive elliptic problem with Neumann boundary conditions and \(L^1\) data. To deal with the non-coercive character of the equation and the low regularity of the right hand-side we mix the finite volume tools and the renormalized techniques. To handle the Neumann boundary conditions we choose solutions having a null median and we prove a convergence result. We present also some numerical experiments in dimension 2 to illustrate the rate of convergence.
期刊介绍:
Calcolo is a quarterly of the Italian National Research Council, under the direction of the Institute for Informatics and Telematics in Pisa. Calcolo publishes original contributions in English on Numerical Analysis and its Applications, and on the Theory of Computation.
The main focus of the journal is on Numerical Linear Algebra, Approximation Theory and its Applications, Numerical Solution of Differential and Integral Equations, Computational Complexity, Algorithmics, Mathematical Aspects of Computer Science, Optimization Theory.
Expository papers will also appear from time to time as an introduction to emerging topics in one of the above mentioned fields. There will be a "Report" section, with abstracts of PhD Theses, news and reports from conferences and book reviews. All submissions will be carefully refereed.