笛卡尔半群和扭曲类群 C* 结构

Tristan Bice, Lisa Orloff Clark, Ying-Fen Lin, Kathryn McCormick
{"title":"笛卡尔半群和扭曲类群 C* 结构","authors":"Tristan Bice, Lisa Orloff Clark, Ying-Fen Lin, Kathryn McCormick","doi":"arxiv-2407.05024","DOIUrl":null,"url":null,"abstract":"We prove that twisted groupoid C*-algebras are characterised, up to\nisomorphism, by having Cartan semigroups, a natural generalisation of\nnormaliser semigroups of Cartan subalgebras. This extends the classic\nKumjian-Renault theory to general twisted \\'etale groupoid C*-algebras, even\nnon-reduced C*-algebras of non-effective groupoids.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartan semigroups and twisted groupoid C*-algebras\",\"authors\":\"Tristan Bice, Lisa Orloff Clark, Ying-Fen Lin, Kathryn McCormick\",\"doi\":\"arxiv-2407.05024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that twisted groupoid C*-algebras are characterised, up to\\nisomorphism, by having Cartan semigroups, a natural generalisation of\\nnormaliser semigroups of Cartan subalgebras. This extends the classic\\nKumjian-Renault theory to general twisted \\\\'etale groupoid C*-algebras, even\\nnon-reduced C*-algebras of non-effective groupoids.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了扭曲类群 C*-藻类的特征是具有 Cartan 半群(Cartan 子藻类的归一化半群的自然概括),直至同构。这就把经典的库姆江-雷诺理论扩展到了一般的扭转类群 C*-数,甚至是非有效类群的非还原 C*-数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cartan semigroups and twisted groupoid C*-algebras
We prove that twisted groupoid C*-algebras are characterised, up to isomorphism, by having Cartan semigroups, a natural generalisation of normaliser semigroups of Cartan subalgebras. This extends the classic Kumjian-Renault theory to general twisted \'etale groupoid C*-algebras, even non-reduced C*-algebras of non-effective groupoids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信