Tristan Bice, Lisa Orloff Clark, Ying-Fen Lin, Kathryn McCormick
{"title":"笛卡尔半群和扭曲类群 C* 结构","authors":"Tristan Bice, Lisa Orloff Clark, Ying-Fen Lin, Kathryn McCormick","doi":"arxiv-2407.05024","DOIUrl":null,"url":null,"abstract":"We prove that twisted groupoid C*-algebras are characterised, up to\nisomorphism, by having Cartan semigroups, a natural generalisation of\nnormaliser semigroups of Cartan subalgebras. This extends the classic\nKumjian-Renault theory to general twisted \\'etale groupoid C*-algebras, even\nnon-reduced C*-algebras of non-effective groupoids.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartan semigroups and twisted groupoid C*-algebras\",\"authors\":\"Tristan Bice, Lisa Orloff Clark, Ying-Fen Lin, Kathryn McCormick\",\"doi\":\"arxiv-2407.05024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that twisted groupoid C*-algebras are characterised, up to\\nisomorphism, by having Cartan semigroups, a natural generalisation of\\nnormaliser semigroups of Cartan subalgebras. This extends the classic\\nKumjian-Renault theory to general twisted \\\\'etale groupoid C*-algebras, even\\nnon-reduced C*-algebras of non-effective groupoids.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cartan semigroups and twisted groupoid C*-algebras
We prove that twisted groupoid C*-algebras are characterised, up to
isomorphism, by having Cartan semigroups, a natural generalisation of
normaliser semigroups of Cartan subalgebras. This extends the classic
Kumjian-Renault theory to general twisted \'etale groupoid C*-algebras, even
non-reduced C*-algebras of non-effective groupoids.