QBOi 模型和 Strateole 2 恒定水平气球中使用的非地形重力波参数比较

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
F. Lott, R. Rani, C. McLandress, A. Podglajen, A. Bushell, M. Bramberger, H.‐K. Lee, J. Alexander, J. Anstey, H.‐Y. Chun, A. Hertzog, N. Butchart, Y.‐H. Kim, Y. Kawatani, B. Legras, E. Manzini, H. Naoe, S. Osprey, R. Plougonven, H. Pohlmann, J. H. Richter, J. Scinocca, J. García‐Serrano, F. Serva, T. Stockdale, S. Versick, S. Watanabe, K. Yoshida
{"title":"QBOi 模型和 Strateole 2 恒定水平气球中使用的非地形重力波参数比较","authors":"F. Lott, R. Rani, C. McLandress, A. Podglajen, A. Bushell, M. Bramberger, H.‐K. Lee, J. Alexander, J. Anstey, H.‐Y. Chun, A. Hertzog, N. Butchart, Y.‐H. Kim, Y. Kawatani, B. Legras, E. Manzini, H. Naoe, S. Osprey, R. Plougonven, H. Pohlmann, J. H. Richter, J. Scinocca, J. García‐Serrano, F. Serva, T. Stockdale, S. Versick, S. Watanabe, K. Yoshida","doi":"10.1002/qj.4793","DOIUrl":null,"url":null,"abstract":"Gravity‐wave (GW) parameterizations from 12 general circulation models (GCMs) participating in the Quasi‐Biennial Oscillation initiative (QBOi) are compared with Strateole 2 balloon observations made in the tropical lower stratosphere from November 2019–February 2020 (phase 1) and from October 2021–January 2022 (phase 2). The parameterizations employ the three standard techniques used in GCMs to represent subgrid‐scale non‐orographic GWs, namely the two globally spectral techniques developed by Warner and McIntyre (1999) and Hines (1997), as well as the “multiwaves” approaches following the work of Lindzen (1981). The input meteorological fields necessary to run the parameterizations offline are extracted from the ERA5 reanalysis and correspond to the meteorological conditions found underneath the balloons. In general, there is fair agreement between amplitudes derived from measurements for waves with periods less than h and parameterizations. The correlation between the daily observations and the corresponding results of the parameterization can be around 0.4, which is significant, since 1200 days of observations are used. Given that the parameterizations have only been tuned to produce a quasi‐biennial oscillation (QBO) in the models, the 0.4 correlation coefficient of the GW momentum fluxes is surprisingly good. These correlations nevertheless vary between schemes and depend little on their formulation (globally spectral versus multiwaves for instance). We therefore attribute these correlations to dynamical filtering, which all schemes take into account, whereas only a few relate the gravity waves to their sources. Statistically significant correlations are mostly found for eastward‐propagating waves, which may be due to the fact that during both Strateole 2 phases the QBO is easterly at the altitude of the balloon flights. We also found that the probability density functions (pdfs) of the momentum fluxes are represented better in spectral schemes with constant sources than in schemes (“spectral” or “multiwaves”) that relate GWs only to their convective sources.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison between non‐orographic gravity‐wave parameterizations used in QBOi models and Strateole 2 constant‐level balloons\",\"authors\":\"F. Lott, R. Rani, C. McLandress, A. Podglajen, A. Bushell, M. Bramberger, H.‐K. Lee, J. Alexander, J. Anstey, H.‐Y. Chun, A. Hertzog, N. Butchart, Y.‐H. Kim, Y. Kawatani, B. Legras, E. Manzini, H. Naoe, S. Osprey, R. Plougonven, H. Pohlmann, J. H. Richter, J. Scinocca, J. García‐Serrano, F. Serva, T. Stockdale, S. Versick, S. Watanabe, K. Yoshida\",\"doi\":\"10.1002/qj.4793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravity‐wave (GW) parameterizations from 12 general circulation models (GCMs) participating in the Quasi‐Biennial Oscillation initiative (QBOi) are compared with Strateole 2 balloon observations made in the tropical lower stratosphere from November 2019–February 2020 (phase 1) and from October 2021–January 2022 (phase 2). The parameterizations employ the three standard techniques used in GCMs to represent subgrid‐scale non‐orographic GWs, namely the two globally spectral techniques developed by Warner and McIntyre (1999) and Hines (1997), as well as the “multiwaves” approaches following the work of Lindzen (1981). The input meteorological fields necessary to run the parameterizations offline are extracted from the ERA5 reanalysis and correspond to the meteorological conditions found underneath the balloons. In general, there is fair agreement between amplitudes derived from measurements for waves with periods less than h and parameterizations. The correlation between the daily observations and the corresponding results of the parameterization can be around 0.4, which is significant, since 1200 days of observations are used. Given that the parameterizations have only been tuned to produce a quasi‐biennial oscillation (QBO) in the models, the 0.4 correlation coefficient of the GW momentum fluxes is surprisingly good. These correlations nevertheless vary between schemes and depend little on their formulation (globally spectral versus multiwaves for instance). We therefore attribute these correlations to dynamical filtering, which all schemes take into account, whereas only a few relate the gravity waves to their sources. Statistically significant correlations are mostly found for eastward‐propagating waves, which may be due to the fact that during both Strateole 2 phases the QBO is easterly at the altitude of the balloon flights. We also found that the probability density functions (pdfs) of the momentum fluxes are represented better in spectral schemes with constant sources than in schemes (“spectral” or “multiwaves”) that relate GWs only to their convective sources.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4793\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4793","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

将参与准双年涛动计划(QBOi)的 12 个大气环流模式(GCM)的重力波(GW)参数化与 2019 年 11 月至 2020 年 2 月(第 1 阶段)和 2021 年 10 月至 2022 年 1 月(第 2 阶段)在热带低平流层进行的 Strateole 2 气球观测结果进行了比较。参数化采用了全球大气环流模型中用于表示亚网格尺度非地形全球大气环流的三种标准技术,即 Warner 和 McIntyre(1999 年)和 Hines(1997 年)开发的两种全球光谱技术,以及 Lindzen(1981 年)研究的 "多波 "方法。离线运行参数化所需的输入气象场是从ERA5 再分析中提取的,与气球下方的气象条件相对应。一般来说,周期小于 h 的波的振幅测量值与参数化值相当一致。由于使用了 1200 天的观测数据,每日观测数据与参数化的相应结果之间的相关性可达 0.4 左右,这一点非常重要。鉴于参数化的调整只是为了在模式中产生准双年振荡(QBO),全球大气动量通量 0.4 的相关系数好得令人吃惊。尽管如此,这些相关性在不同的方案之间是不同的,而且几乎不取决于它们的表述(例如,全局频谱与多波)。因此,我们将这些相关性归因于动态滤波,所有方案都考虑到了这一点,而只有少数方案将引力波与其来源联系起来。统计意义上的相关性主要体现在向东传播的重力波上,这可能是由于在 Strateole 2 的两个阶段,气球飞行高度处的 QBO 都是向东的。我们还发现,动量通量的概率密度函数(pdf)在恒定源的频谱方案中比在仅将全球大气环流与其对流源相关联的方案("频谱 "或 "多波")中表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison between non‐orographic gravity‐wave parameterizations used in QBOi models and Strateole 2 constant‐level balloons
Gravity‐wave (GW) parameterizations from 12 general circulation models (GCMs) participating in the Quasi‐Biennial Oscillation initiative (QBOi) are compared with Strateole 2 balloon observations made in the tropical lower stratosphere from November 2019–February 2020 (phase 1) and from October 2021–January 2022 (phase 2). The parameterizations employ the three standard techniques used in GCMs to represent subgrid‐scale non‐orographic GWs, namely the two globally spectral techniques developed by Warner and McIntyre (1999) and Hines (1997), as well as the “multiwaves” approaches following the work of Lindzen (1981). The input meteorological fields necessary to run the parameterizations offline are extracted from the ERA5 reanalysis and correspond to the meteorological conditions found underneath the balloons. In general, there is fair agreement between amplitudes derived from measurements for waves with periods less than h and parameterizations. The correlation between the daily observations and the corresponding results of the parameterization can be around 0.4, which is significant, since 1200 days of observations are used. Given that the parameterizations have only been tuned to produce a quasi‐biennial oscillation (QBO) in the models, the 0.4 correlation coefficient of the GW momentum fluxes is surprisingly good. These correlations nevertheless vary between schemes and depend little on their formulation (globally spectral versus multiwaves for instance). We therefore attribute these correlations to dynamical filtering, which all schemes take into account, whereas only a few relate the gravity waves to their sources. Statistically significant correlations are mostly found for eastward‐propagating waves, which may be due to the fact that during both Strateole 2 phases the QBO is easterly at the altitude of the balloon flights. We also found that the probability density functions (pdfs) of the momentum fluxes are represented better in spectral schemes with constant sources than in schemes (“spectral” or “multiwaves”) that relate GWs only to their convective sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信