H. Anand, W. Wehner, D. Eldon, A. Welander, Z. Xing, A. Lvovskiy, J. Barr, E. Cho, B. Sammuli, D. Humphreys, N. Eidietis, A. Leonard, M. Kochan, C. Vincent, G. McArdle, G. Cunningham, A. Thornton, J. Harrison, V. Soukhanovskii, J. Lovell
{"title":"MAST 升级型托卡马克的实时等离子体平衡重建和形状控制","authors":"H. Anand, W. Wehner, D. Eldon, A. Welander, Z. Xing, A. Lvovskiy, J. Barr, E. Cho, B. Sammuli, D. Humphreys, N. Eidietis, A. Leonard, M. Kochan, C. Vincent, G. McArdle, G. Cunningham, A. Thornton, J. Harrison, V. Soukhanovskii, J. Lovell","doi":"10.1088/1741-4326/ad5c80","DOIUrl":null,"url":null,"abstract":"Real-time magnetic control has been developed to deliver precise control of multiple plasma shape parameters for advanced divertor configurations, including double-null, Super-X, X-point target and X-divertor for the first time on the MAST Upgrade (MAST-U) spherical tokamak. Successful real-time magnetic equilibrium control of different plasma shape variables has been accomplished in the 2022–2023 MAST-U experimental campaign for the advanced MAST-U divertor configurations. Application of the MAST-U boundary reconstruction algorithm, LEMUR, is described and compared with off-line equilibrium reconstruction and diagnostic measurements. The process of design and verification of the axisymmetric magnetic control schemes using a suite of control analysis tools (known collectively as TokSys) is also described.","PeriodicalId":19379,"journal":{"name":"Nuclear Fusion","volume":"15 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time plasma equilibrium reconstruction and shape control for the MAST Upgrade tokamak\",\"authors\":\"H. Anand, W. Wehner, D. Eldon, A. Welander, Z. Xing, A. Lvovskiy, J. Barr, E. Cho, B. Sammuli, D. Humphreys, N. Eidietis, A. Leonard, M. Kochan, C. Vincent, G. McArdle, G. Cunningham, A. Thornton, J. Harrison, V. Soukhanovskii, J. Lovell\",\"doi\":\"10.1088/1741-4326/ad5c80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time magnetic control has been developed to deliver precise control of multiple plasma shape parameters for advanced divertor configurations, including double-null, Super-X, X-point target and X-divertor for the first time on the MAST Upgrade (MAST-U) spherical tokamak. Successful real-time magnetic equilibrium control of different plasma shape variables has been accomplished in the 2022–2023 MAST-U experimental campaign for the advanced MAST-U divertor configurations. Application of the MAST-U boundary reconstruction algorithm, LEMUR, is described and compared with off-line equilibrium reconstruction and diagnostic measurements. The process of design and verification of the axisymmetric magnetic control schemes using a suite of control analysis tools (known collectively as TokSys) is also described.\",\"PeriodicalId\":19379,\"journal\":{\"name\":\"Nuclear Fusion\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1741-4326/ad5c80\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad5c80","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
已开发出实时磁控制功能,可为先进的分流器配置提供多个等离子体形状参数的精确控制,包括双空、Super-X、X 点目标和 X 分流器,这在 MAST 升级(MAST-U)球形托卡马克上尚属首次。在2022-2023年MAST-U实验活动中,针对先进的MAST-U分流器配置,成功实现了对不同等离子体形状变量的实时磁平衡控制。介绍了MAST-U边界重建算法LEMUR的应用,并与离线平衡重建和诊断测量进行了比较。还介绍了使用一套控制分析工具(统称为 TokSys)设计和验证轴对称磁控制方案的过程。
Real-time plasma equilibrium reconstruction and shape control for the MAST Upgrade tokamak
Real-time magnetic control has been developed to deliver precise control of multiple plasma shape parameters for advanced divertor configurations, including double-null, Super-X, X-point target and X-divertor for the first time on the MAST Upgrade (MAST-U) spherical tokamak. Successful real-time magnetic equilibrium control of different plasma shape variables has been accomplished in the 2022–2023 MAST-U experimental campaign for the advanced MAST-U divertor configurations. Application of the MAST-U boundary reconstruction algorithm, LEMUR, is described and compared with off-line equilibrium reconstruction and diagnostic measurements. The process of design and verification of the axisymmetric magnetic control schemes using a suite of control analysis tools (known collectively as TokSys) is also described.
期刊介绍:
Nuclear Fusion publishes articles making significant advances to the field of controlled thermonuclear fusion. The journal scope includes:
-the production, heating and confinement of high temperature plasmas;
-the physical properties of such plasmas;
-the experimental or theoretical methods of exploring or explaining them;
-fusion reactor physics;
-reactor concepts; and
-fusion technologies.
The journal has a dedicated Associate Editor for inertial confinement fusion.