随机特征霍普菲尔德网络将检索泛化到以前未见过的示例中

Silvio Kalaj, Clarissa Lauditi, Gabriele Perugini, Carlo Lucibello, Enrico M. Malatesta, Matteo Negri
{"title":"随机特征霍普菲尔德网络将检索泛化到以前未见过的示例中","authors":"Silvio Kalaj, Clarissa Lauditi, Gabriele Perugini, Carlo Lucibello, Enrico M. Malatesta, Matteo Negri","doi":"arxiv-2407.05658","DOIUrl":null,"url":null,"abstract":"It has been recently shown that a learning transition happens when a Hopfield\nNetwork stores examples generated as superpositions of random features, where\nnew attractors corresponding to such features appear in the model. In this work\nwe reveal that the network also develops attractors corresponding to previously\nunseen examples generated with the same set of features. We explain this\nsurprising behaviour in terms of spurious states of the learned features: we\nargue that, increasing the number of stored examples beyond the learning\ntransition, the model also learns to mix the features to represent both stored\nand previously unseen examples. We support this claim with the computation of\nthe phase diagram of the model.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Features Hopfield Networks generalize retrieval to previously unseen examples\",\"authors\":\"Silvio Kalaj, Clarissa Lauditi, Gabriele Perugini, Carlo Lucibello, Enrico M. Malatesta, Matteo Negri\",\"doi\":\"arxiv-2407.05658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been recently shown that a learning transition happens when a Hopfield\\nNetwork stores examples generated as superpositions of random features, where\\nnew attractors corresponding to such features appear in the model. In this work\\nwe reveal that the network also develops attractors corresponding to previously\\nunseen examples generated with the same set of features. We explain this\\nsurprising behaviour in terms of spurious states of the learned features: we\\nargue that, increasing the number of stored examples beyond the learning\\ntransition, the model also learns to mix the features to represent both stored\\nand previously unseen examples. We support this claim with the computation of\\nthe phase diagram of the model.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,当 Hopfield 网络存储随机特征叠加生成的示例时,模型中会出现与这些特征相对应的新吸引子,从而发生学习转换。在这项研究中,我们发现该网络也会发展出与以前未见过的用同一组特征生成的示例相对应的吸引子。我们用所学特征的虚假状态来解释这种令人惊讶的行为:我们认为,当存储的示例数量增加到超过学习转换时,模型也学会了混合特征,以代表存储的和以前未见过的示例。我们通过计算模型的相图来支持这一说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Features Hopfield Networks generalize retrieval to previously unseen examples
It has been recently shown that a learning transition happens when a Hopfield Network stores examples generated as superpositions of random features, where new attractors corresponding to such features appear in the model. In this work we reveal that the network also develops attractors corresponding to previously unseen examples generated with the same set of features. We explain this surprising behaviour in terms of spurious states of the learned features: we argue that, increasing the number of stored examples beyond the learning transition, the model also learns to mix the features to represent both stored and previously unseen examples. We support this claim with the computation of the phase diagram of the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信