C^*$代数的实$K$理论:事实而已

Jeff Boersema, Claude Schochet
{"title":"C^*$代数的实$K$理论:事实而已","authors":"Jeff Boersema, Claude Schochet","doi":"arxiv-2407.05880","DOIUrl":null,"url":null,"abstract":"This paper is intended to present the basic properties of $KO$-theory for\nreal $C^*$-algebras and to explain its relationship with complex $K$-theory and\nwith $KR$- theory. Whenever possible we will rely upon proofs in printed\nliterature, particularly the work of Karoubi, Wood, Schr\\\"oder, and more recent\nwork of Boersema and J. M. Rosenberg. In addition, we shall explain how\n$KO$-theory is related to the Ten-Fold Way in physics and point out how some\ndeeper features of $KO$-theory for operator algebras may provide powerful new\ntools there. Commutative real $C^*$-algebras NOT of the form $C^R(X)$ will play\na special role. We also will identify Atiyah's $KR^0(X, \\tau ))$ in terms of\n$KO_0$ of an associated real $C^*$-algebra.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real $K$-Theory for $C^*$-Algebras: Just the Facts\",\"authors\":\"Jeff Boersema, Claude Schochet\",\"doi\":\"arxiv-2407.05880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is intended to present the basic properties of $KO$-theory for\\nreal $C^*$-algebras and to explain its relationship with complex $K$-theory and\\nwith $KR$- theory. Whenever possible we will rely upon proofs in printed\\nliterature, particularly the work of Karoubi, Wood, Schr\\\\\\\"oder, and more recent\\nwork of Boersema and J. M. Rosenberg. In addition, we shall explain how\\n$KO$-theory is related to the Ten-Fold Way in physics and point out how some\\ndeeper features of $KO$-theory for operator algebras may provide powerful new\\ntools there. Commutative real $C^*$-algebras NOT of the form $C^R(X)$ will play\\na special role. We also will identify Atiyah's $KR^0(X, \\\\tau ))$ in terms of\\n$KO_0$ of an associated real $C^*$-algebra.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在介绍实$C^*$格的$KO$理论的基本性质,并解释它与复$K$理论和$KR$理论的关系。在可能的情况下,我们将依靠印刷文献中的证明,特别是卡鲁比、伍德、施罗德的工作,以及波尔塞马和罗森伯格的最新工作。此外,我们还将解释 $KO$ 理论与物理学中的 "十重道 "是如何相关的,并指出算子代数的 $KO$ 理论的一些更深层次的特征是如何为物理学提供强大的新工具的。非$C^R(X)$形式的交换实$C^*$数组将发挥特殊作用。我们还将根据相关实$C^*$代数的$KO_0$来确定阿蒂亚的$KR^0(X, \tau ))$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real $K$-Theory for $C^*$-Algebras: Just the Facts
This paper is intended to present the basic properties of $KO$-theory for real $C^*$-algebras and to explain its relationship with complex $K$-theory and with $KR$- theory. Whenever possible we will rely upon proofs in printed literature, particularly the work of Karoubi, Wood, Schr\"oder, and more recent work of Boersema and J. M. Rosenberg. In addition, we shall explain how $KO$-theory is related to the Ten-Fold Way in physics and point out how some deeper features of $KO$-theory for operator algebras may provide powerful new tools there. Commutative real $C^*$-algebras NOT of the form $C^R(X)$ will play a special role. We also will identify Atiyah's $KR^0(X, \tau ))$ in terms of $KO_0$ of an associated real $C^*$-algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信