{"title":"埃文斯连锁综合体","authors":"S. Joseph Lippert","doi":"arxiv-2407.06065","DOIUrl":null,"url":null,"abstract":"We elaborate on the construction of the Evans chain complex for higher-rank\ngraph $C^*$-algebras. Specifically, we introduce a block matrix presentation of\nthe differential maps. These block matrices are then used to identify a wide\nfamily of higher-rank graph $C^*$-algebras with trivial K-theory. Additionally,\nin the specialized case where the higher-rank graph consists of one vertex, we\nare able to use the K\\\"unneth theorem to explicitly compute the homology groups\nof the Evans chain complex.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On The Evans Chain Complex\",\"authors\":\"S. Joseph Lippert\",\"doi\":\"arxiv-2407.06065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We elaborate on the construction of the Evans chain complex for higher-rank\\ngraph $C^*$-algebras. Specifically, we introduce a block matrix presentation of\\nthe differential maps. These block matrices are then used to identify a wide\\nfamily of higher-rank graph $C^*$-algebras with trivial K-theory. Additionally,\\nin the specialized case where the higher-rank graph consists of one vertex, we\\nare able to use the K\\\\\\\"unneth theorem to explicitly compute the homology groups\\nof the Evans chain complex.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们详细阐述了高阶图 $C^*$ 算法的埃文斯链复数构造。具体来说,我们引入了微分映射的分块矩阵表述。然后,这些分块矩阵被用来识别具有琐K理论的高阶图$C^*$数组。此外,在高阶图由一个顶点组成的特殊情况下,我们能够使用 K ("unneth")定理来明确计算埃文斯链复数的同调群。
We elaborate on the construction of the Evans chain complex for higher-rank
graph $C^*$-algebras. Specifically, we introduce a block matrix presentation of
the differential maps. These block matrices are then used to identify a wide
family of higher-rank graph $C^*$-algebras with trivial K-theory. Additionally,
in the specialized case where the higher-rank graph consists of one vertex, we
are able to use the K\"unneth theorem to explicitly compute the homology groups
of the Evans chain complex.