C^*$量子随机流的费曼-卡克扰动

Alexander C. R. Belton, Stephen J. Wills
{"title":"C^*$量子随机流的费曼-卡克扰动","authors":"Alexander C. R. Belton, Stephen J. Wills","doi":"arxiv-2407.06732","DOIUrl":null,"url":null,"abstract":"The method of Feynman-Kac perturbation of quantum stochastic processes has a\nlong pedigree, with the theory usually developed within the framework of\nprocesses on von Neumann algebras. In this work, the theory of operator spaces\nis exploited to enable a broadening of the scope to flows on $C^*$ algebras.\nAlthough the hypotheses that need to be verified in the general setting may\nseem numerous, we provide auxiliary results that enable this to be simplified\nin many of the cases which arise in practice. A wide variety of examples is\nprovided by way of illustration.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feynman-Kac perturbation of $C^*$ quantum stochastic flows\",\"authors\":\"Alexander C. R. Belton, Stephen J. Wills\",\"doi\":\"arxiv-2407.06732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method of Feynman-Kac perturbation of quantum stochastic processes has a\\nlong pedigree, with the theory usually developed within the framework of\\nprocesses on von Neumann algebras. In this work, the theory of operator spaces\\nis exploited to enable a broadening of the scope to flows on $C^*$ algebras.\\nAlthough the hypotheses that need to be verified in the general setting may\\nseem numerous, we provide auxiliary results that enable this to be simplified\\nin many of the cases which arise in practice. A wide variety of examples is\\nprovided by way of illustration.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.06732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子随机过程的费曼-卡克扰动方法有着悠久的历史,其理论通常是在冯-诺依曼代数的过程框架内发展起来的。在这项研究中,我们利用算子空间的理论,将研究范围扩大到 $C^*$ 矩阵上的流动。虽然在一般情况下需要验证的假设似乎很多,但我们提供了一些辅助结果,使实际中出现的许多情况得以简化。为了说明问题,我们提供了各种各样的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feynman-Kac perturbation of $C^*$ quantum stochastic flows
The method of Feynman-Kac perturbation of quantum stochastic processes has a long pedigree, with the theory usually developed within the framework of processes on von Neumann algebras. In this work, the theory of operator spaces is exploited to enable a broadening of the scope to flows on $C^*$ algebras. Although the hypotheses that need to be verified in the general setting may seem numerous, we provide auxiliary results that enable this to be simplified in many of the cases which arise in practice. A wide variety of examples is provided by way of illustration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信