Junseo Gu, Donghyun Lee, Jeonghoon Oh, Hyeokjun Si, Kwanlae Kim
{"title":"用于铁电辅助三电纳米发电机的聚多巴胺辅助添加剂改性和分层形态聚偏氟乙烯纳米纤维毡的协同作用","authors":"Junseo Gu, Donghyun Lee, Jeonghoon Oh, Hyeokjun Si, Kwanlae Kim","doi":"10.1007/s42765-024-00461-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the last decade, numerous physical modification methods have been introduced to enhance triboelectric nanogenerator (TENG) performance although they generally require complex and multiple fabrication processes. This study proposes a facile fabrication process for Poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats incorporating additive and nonadditive physical modifications. Patterned PVDF NF mats are prepared by electrospinning using a metal mesh as the NF collector. As a negative triboelectric material, the TENG with the patterned PVDF NF mat exhibits superior performance owing to the engineered morphology of the contact layer. PVDF is crucial in TENGs owing to its superior ferroelectric properties and surface charge density when combined with specific electroceramics. Hence, the synergy of the physical modification methods is achieved by incorporating BaTiO<sub>3</sub> (BTO) nanoparticles (NPs) into the PVDF. By functionalizing BTO NPs with polydopamine, the TENG performance is further improved owing to the enhanced dispersion of NPs and improved crystallinity of the PVDF chains. Utilizing large NPs produces a nanopatterning effect on the NF surface, thereby resulting in the hierarchical structure of the NF mats. The source of the voltage signals from the TENG is analyzed using fast Fourier transform.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 6","pages":"1910 - 1926"},"PeriodicalIF":17.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergy of Polydopamine-Assisted Additive Modification and Hierarchical-Morphology Poly(Vinylidene Fluoride) Nanofiber Mat for Ferroelectric-Assisted Triboelectric Nanogenerator\",\"authors\":\"Junseo Gu, Donghyun Lee, Jeonghoon Oh, Hyeokjun Si, Kwanlae Kim\",\"doi\":\"10.1007/s42765-024-00461-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the last decade, numerous physical modification methods have been introduced to enhance triboelectric nanogenerator (TENG) performance although they generally require complex and multiple fabrication processes. This study proposes a facile fabrication process for Poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats incorporating additive and nonadditive physical modifications. Patterned PVDF NF mats are prepared by electrospinning using a metal mesh as the NF collector. As a negative triboelectric material, the TENG with the patterned PVDF NF mat exhibits superior performance owing to the engineered morphology of the contact layer. PVDF is crucial in TENGs owing to its superior ferroelectric properties and surface charge density when combined with specific electroceramics. Hence, the synergy of the physical modification methods is achieved by incorporating BaTiO<sub>3</sub> (BTO) nanoparticles (NPs) into the PVDF. By functionalizing BTO NPs with polydopamine, the TENG performance is further improved owing to the enhanced dispersion of NPs and improved crystallinity of the PVDF chains. Utilizing large NPs produces a nanopatterning effect on the NF surface, thereby resulting in the hierarchical structure of the NF mats. The source of the voltage signals from the TENG is analyzed using fast Fourier transform.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 6\",\"pages\":\"1910 - 1926\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00461-1\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00461-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在过去十年中,为提高三电纳米发电机(TENG)的性能,引入了许多物理改性方法,但这些方法通常需要复杂和多重的制造工艺。本研究提出了一种结合添加剂和非添加剂物理改性的聚偏二氟乙烯(PVDF)纳米纤维(NF)毡的简便制造工艺。利用金属网作为 NF 收集器,通过电纺丝制备出图案化的 PVDF NF 垫。作为一种负三电材料,采用图案化 PVDF NF 垫的 TENG 由于接触层的工程形态而表现出卓越的性能。PVDF 具有优异的铁电特性和表面电荷密度,结合特定的电化学特性,因此在 TENG 中至关重要。因此,通过在 PVDF 中加入 BaTiO3 (BTO) 纳米粒子 (NPs),实现了物理改性方法的协同作用。通过用多巴胺对 BTO NPs 进行官能化,NPs 的分散性得到增强,PVDF 链的结晶度得到改善,从而进一步提高了 TENG 的性能。利用大尺寸 NPs 可在 NF 表面产生纳米图案效应,从而形成 NF 垫的分层结构。利用快速傅立叶变换分析了来自 TENG 的电压信号源。
Synergy of Polydopamine-Assisted Additive Modification and Hierarchical-Morphology Poly(Vinylidene Fluoride) Nanofiber Mat for Ferroelectric-Assisted Triboelectric Nanogenerator
In the last decade, numerous physical modification methods have been introduced to enhance triboelectric nanogenerator (TENG) performance although they generally require complex and multiple fabrication processes. This study proposes a facile fabrication process for Poly(vinylidene fluoride) (PVDF) nanofiber (NF) mats incorporating additive and nonadditive physical modifications. Patterned PVDF NF mats are prepared by electrospinning using a metal mesh as the NF collector. As a negative triboelectric material, the TENG with the patterned PVDF NF mat exhibits superior performance owing to the engineered morphology of the contact layer. PVDF is crucial in TENGs owing to its superior ferroelectric properties and surface charge density when combined with specific electroceramics. Hence, the synergy of the physical modification methods is achieved by incorporating BaTiO3 (BTO) nanoparticles (NPs) into the PVDF. By functionalizing BTO NPs with polydopamine, the TENG performance is further improved owing to the enhanced dispersion of NPs and improved crystallinity of the PVDF chains. Utilizing large NPs produces a nanopatterning effect on the NF surface, thereby resulting in the hierarchical structure of the NF mats. The source of the voltage signals from the TENG is analyzed using fast Fourier transform.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.