Along Zheng, Kening Wan, Yuwen Huang, Yanyan Ma, Tao Ding, Yong Zheng, Ziyin Chen, Qichun Feng, Zhaofang Du
{"title":"通过冷冻纺丝干燥策略在中空弹性纤维内构建具有高灵敏度和宽范围线性度的各向异性导电网络","authors":"Along Zheng, Kening Wan, Yuwen Huang, Yanyan Ma, Tao Ding, Yong Zheng, Ziyin Chen, Qichun Feng, Zhaofang Du","doi":"10.1007/s42765-024-00460-2","DOIUrl":null,"url":null,"abstract":"<div><p>Stretchable conductive fibers composed of conductive materials and elastic substrates have advantages such as braiding ability, electrical conductivity, and high resilience, making them ideal materials for fibrous wearable strain sensors. However, the weak interface between the conductive materials and elastic substrates restricts fibers flexibility under strain, leading to challenges in achieving both linearity and sensitivity of the as-prepared fibrous strain sensor. Herein, cryo-spun drying strategy is proposed to fabricate the thermoplastic polyurethane (TPU) fiber with anisotropic conductive networks (ACN@TPU fiber). Benefiting from the excellent mechanical properties of TPU, and the excellent interface among TPU, silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA), the prepared ACN@TPU fiber exhibits an outstanding mechanical performance. The anisotropic conductive networks enable the ACN@TPU fiber to achieve high sensitivity (gauge factor, <span>\\(GF\\)</span> = 4.68) and excellent linearity within a wide working range (100% strain). Furthermore, mathematical model based on AgNPs is established and the resistance calculation equation is derived, with a highly matched fitting and experimental results (<span>\\(R^{2}\\)</span> = 0.998). As a conceptual demonstration, the ACN@TPU fiber sensor is worn on a mannequin to accurately and instantly detect movements. Therefore, the successful construction of ACN@TPU fiber with anisotropic conductive networks through the cryo-spun drying strategy provides a feasible approach for the design and preparation of fibrous strain sensing materials with high linearity and high sensitivity.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 6","pages":"1898 - 1909"},"PeriodicalIF":17.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing Anisotropic Conductive Networks inside Hollow Elastic Fiber with High Sensitivity and Wide-Range Linearity by Cryo-spun Drying Strategy\",\"authors\":\"Along Zheng, Kening Wan, Yuwen Huang, Yanyan Ma, Tao Ding, Yong Zheng, Ziyin Chen, Qichun Feng, Zhaofang Du\",\"doi\":\"10.1007/s42765-024-00460-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stretchable conductive fibers composed of conductive materials and elastic substrates have advantages such as braiding ability, electrical conductivity, and high resilience, making them ideal materials for fibrous wearable strain sensors. However, the weak interface between the conductive materials and elastic substrates restricts fibers flexibility under strain, leading to challenges in achieving both linearity and sensitivity of the as-prepared fibrous strain sensor. Herein, cryo-spun drying strategy is proposed to fabricate the thermoplastic polyurethane (TPU) fiber with anisotropic conductive networks (ACN@TPU fiber). Benefiting from the excellent mechanical properties of TPU, and the excellent interface among TPU, silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA), the prepared ACN@TPU fiber exhibits an outstanding mechanical performance. The anisotropic conductive networks enable the ACN@TPU fiber to achieve high sensitivity (gauge factor, <span>\\\\(GF\\\\)</span> = 4.68) and excellent linearity within a wide working range (100% strain). Furthermore, mathematical model based on AgNPs is established and the resistance calculation equation is derived, with a highly matched fitting and experimental results (<span>\\\\(R^{2}\\\\)</span> = 0.998). As a conceptual demonstration, the ACN@TPU fiber sensor is worn on a mannequin to accurately and instantly detect movements. Therefore, the successful construction of ACN@TPU fiber with anisotropic conductive networks through the cryo-spun drying strategy provides a feasible approach for the design and preparation of fibrous strain sensing materials with high linearity and high sensitivity.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 6\",\"pages\":\"1898 - 1909\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00460-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00460-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Constructing Anisotropic Conductive Networks inside Hollow Elastic Fiber with High Sensitivity and Wide-Range Linearity by Cryo-spun Drying Strategy
Stretchable conductive fibers composed of conductive materials and elastic substrates have advantages such as braiding ability, electrical conductivity, and high resilience, making them ideal materials for fibrous wearable strain sensors. However, the weak interface between the conductive materials and elastic substrates restricts fibers flexibility under strain, leading to challenges in achieving both linearity and sensitivity of the as-prepared fibrous strain sensor. Herein, cryo-spun drying strategy is proposed to fabricate the thermoplastic polyurethane (TPU) fiber with anisotropic conductive networks (ACN@TPU fiber). Benefiting from the excellent mechanical properties of TPU, and the excellent interface among TPU, silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA), the prepared ACN@TPU fiber exhibits an outstanding mechanical performance. The anisotropic conductive networks enable the ACN@TPU fiber to achieve high sensitivity (gauge factor, \(GF\) = 4.68) and excellent linearity within a wide working range (100% strain). Furthermore, mathematical model based on AgNPs is established and the resistance calculation equation is derived, with a highly matched fitting and experimental results (\(R^{2}\) = 0.998). As a conceptual demonstration, the ACN@TPU fiber sensor is worn on a mannequin to accurately and instantly detect movements. Therefore, the successful construction of ACN@TPU fiber with anisotropic conductive networks through the cryo-spun drying strategy provides a feasible approach for the design and preparation of fibrous strain sensing materials with high linearity and high sensitivity.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.