整数月桂多项式的可分性、同偶点和裂隙独立性

Douglas Lind, Klaus Schmidt
{"title":"整数月桂多项式的可分性、同偶点和裂隙独立性","authors":"Douglas Lind, Klaus Schmidt","doi":"10.1007/s13226-024-00650-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>f</i>, <i>p</i>, and <i>q</i> be Laurent polynomials with integer coefficients in one or several variables, and suppose that <i>f</i> divides <span>\\(p+q\\)</span>. We establish sufficient conditions to guarantee that <i>f</i> individually divides <i>p</i> and <i>q</i>. These conditions involve a bound on coefficients, a separation between the supports of <i>p</i> and <i>q</i>, and, surprisingly, a requirement on the complex variety of <i>f</i> called atorality satisfied by many but not all polynomials. Our proof involves a related dynamical system and the fundamental dynamical notion of homoclinic point. Without the atorality assumption our methods fail, and it is unknown whether our results hold without this assumption. We use this to establish exponential recurrence of the related dynamical system, and conclude with some remarks and open problems.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Divisibility of integer laurent polynomials, homoclinic points, and lacunary independence\",\"authors\":\"Douglas Lind, Klaus Schmidt\",\"doi\":\"10.1007/s13226-024-00650-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>f</i>, <i>p</i>, and <i>q</i> be Laurent polynomials with integer coefficients in one or several variables, and suppose that <i>f</i> divides <span>\\\\(p+q\\\\)</span>. We establish sufficient conditions to guarantee that <i>f</i> individually divides <i>p</i> and <i>q</i>. These conditions involve a bound on coefficients, a separation between the supports of <i>p</i> and <i>q</i>, and, surprisingly, a requirement on the complex variety of <i>f</i> called atorality satisfied by many but not all polynomials. Our proof involves a related dynamical system and the fundamental dynamical notion of homoclinic point. Without the atorality assumption our methods fail, and it is unknown whether our results hold without this assumption. We use this to establish exponential recurrence of the related dynamical system, and conclude with some remarks and open problems.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00650-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00650-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 f、p 和 q 是在一个或多个变量中具有整数系数的劳伦多项式,并假设 f 平分 (p+q\)。这些条件涉及系数的约束、p 和 q 的支持之间的分离,以及令人惊讶的是,许多多项式(而非所有多项式)都能满足的对 f 的复数种类的要求,即理论性。我们的证明涉及一个相关的动力系统和同轴点的基本动力概念。如果没有orality 假设,我们的方法就会失败,而如果没有这个假设,我们的结果是否成立还是未知数。我们利用这一点建立了相关动力系统的指数递推,最后提出了一些评论和有待解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divisibility of integer laurent polynomials, homoclinic points, and lacunary independence

Let f, p, and q be Laurent polynomials with integer coefficients in one or several variables, and suppose that f divides \(p+q\). We establish sufficient conditions to guarantee that f individually divides p and q. These conditions involve a bound on coefficients, a separation between the supports of p and q, and, surprisingly, a requirement on the complex variety of f called atorality satisfied by many but not all polynomials. Our proof involves a related dynamical system and the fundamental dynamical notion of homoclinic point. Without the atorality assumption our methods fail, and it is unknown whether our results hold without this assumption. We use this to establish exponential recurrence of the related dynamical system, and conclude with some remarks and open problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信