非线性分数延迟积分微分方程的数值解法及收敛性分析

N. Peykrayegan, M. Ghovatmand, M. H. Noori Skandari, S. Shateyi
{"title":"非线性分数延迟积分微分方程的数值解法及收敛性分析","authors":"N. Peykrayegan, M. Ghovatmand, M. H. Noori Skandari, S. Shateyi","doi":"10.1007/s13226-024-00620-5","DOIUrl":null,"url":null,"abstract":"<p>In this work, a high accurate method is given for solving the nonlinear fractional delay integro-differential equations, numerically. By considering the equation before and after delay time, we first apply the delay function in the equation and propose an equivalent system. By discretization in the Jacobi-Gauss collocation points, an algebraic nonlinear system is then proposed to approximate the solution of main equation. The convergence of method is fully given in spaces <span>\\(L^{\\infty }_{\\omega ^{\\alpha ,\\beta }}(I)\\)</span> and <span>\\(L^{2}_{\\omega ^{\\alpha ,\\beta }}(I)\\)</span>, and the error bounds are specified for obtained approximations. Finally, some numerical examples are provided to show the capability and efficiency of method.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical solution of nonlinear fractional delay integro-differential equations with convergence analysis\",\"authors\":\"N. Peykrayegan, M. Ghovatmand, M. H. Noori Skandari, S. Shateyi\",\"doi\":\"10.1007/s13226-024-00620-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a high accurate method is given for solving the nonlinear fractional delay integro-differential equations, numerically. By considering the equation before and after delay time, we first apply the delay function in the equation and propose an equivalent system. By discretization in the Jacobi-Gauss collocation points, an algebraic nonlinear system is then proposed to approximate the solution of main equation. The convergence of method is fully given in spaces <span>\\\\(L^{\\\\infty }_{\\\\omega ^{\\\\alpha ,\\\\beta }}(I)\\\\)</span> and <span>\\\\(L^{2}_{\\\\omega ^{\\\\alpha ,\\\\beta }}(I)\\\\)</span>, and the error bounds are specified for obtained approximations. Finally, some numerical examples are provided to show the capability and efficiency of method.</p>\",\"PeriodicalId\":501427,\"journal\":{\"name\":\"Indian Journal of Pure and Applied Mathematics\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13226-024-00620-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00620-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们给出了一种高精度方法,用于数值求解非线性分数延迟积分微分方程。通过考虑延迟时间前后的方程,我们首先在方程中应用了延迟函数,并提出了一个等价系统。通过在 Jacobi-Gauss 配点上离散化,然后提出一个代数非线性系统来近似求解主方程。在空间 \(L^{\infty }_{\omega ^{\alpha ,\beta }}(I)\) 和 \(L^{2}_{\omega ^{\alpha ,\beta }}(I)\) 中充分给出了方法的收敛性,并为得到的近似值指明了误差边界。最后,我们提供了一些数值示例来说明该方法的能力和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical solution of nonlinear fractional delay integro-differential equations with convergence analysis

Numerical solution of nonlinear fractional delay integro-differential equations with convergence analysis

In this work, a high accurate method is given for solving the nonlinear fractional delay integro-differential equations, numerically. By considering the equation before and after delay time, we first apply the delay function in the equation and propose an equivalent system. By discretization in the Jacobi-Gauss collocation points, an algebraic nonlinear system is then proposed to approximate the solution of main equation. The convergence of method is fully given in spaces \(L^{\infty }_{\omega ^{\alpha ,\beta }}(I)\) and \(L^{2}_{\omega ^{\alpha ,\beta }}(I)\), and the error bounds are specified for obtained approximations. Finally, some numerical examples are provided to show the capability and efficiency of method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信