Sujit Kumar Roy, Trisna Das, Tanuja Barua, Md. Arif Chowdhury, Swapan Talukdar, Javed Mallick, Atiqur Rahman, Naif Mana Almakayeel
{"title":"孟加拉国努阿卡利偏远地区 Hatiya Upazila 的土壤盐分对土壤化学性质的影响","authors":"Sujit Kumar Roy, Trisna Das, Tanuja Barua, Md. Arif Chowdhury, Swapan Talukdar, Javed Mallick, Atiqur Rahman, Naif Mana Almakayeel","doi":"10.1007/s11852-024-01064-z","DOIUrl":null,"url":null,"abstract":"<p>Soil salinity influences soil quality and other essential plant nutrients, reducing productivity and soil fertility in the Hatiya Upazila (Upazila is the second lowest tier of regional administration in Bangladesh), a coastal district of Noakhali, which is the soil saline vulnerable region of Bangladesh. This study determined the area’s soil salinity level, current crop production condition, and related soil salinity level of Hatiya Upazila. This research aimed to evaluate the effect of soil salinity on soil nutrients and other soil characteristics. To conduct this study, we randomly collected 78 soil samples from the 26 villages with three replicable samples from each sampling location and nine chemical characteristics of the soil samples evaluated. We mapped the soil salinity and other soil properties using the inverse distance weighting (IDW) interpolation techniques in ArcGIS software (version 10.8) environment. Also, we used Pearson’s correlation coefficient and linear regression models to evaluate the impact of soil salinity on the chemical properties of the soil. Results show that 38% of the study area has mild salinity, while 8% of the study area is affected by moderate salinity. In addition, around 4% of the study area is affected by high salinity. The reverse relation occurs when soil salinity is high and phosphorus, total nitrogen, organic matter, and carbon levels are low. According to statistical analysis, soil salinity (EC) is closely related to Na and K (<i>r</i> = 0.422). Soil salinity (EC) negatively affects OM, TN, P, and OC. The pH or sulphur content (EC) had no effect on the salinity of the soil. Among OCs, OM and TN have a favourable and strong relationship among themselves. These findings will benefit many stakeholders from the public and private sectors and local leaders in taking appropriate action to decrease the impact of soil salinity on agricultural production.</p>","PeriodicalId":48909,"journal":{"name":"Journal of Coastal Conservation","volume":"41 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of soil salinity on the chemical properties of soil at Hatiya Upazila, a remote area of Noakhali, Bangladesh\",\"authors\":\"Sujit Kumar Roy, Trisna Das, Tanuja Barua, Md. Arif Chowdhury, Swapan Talukdar, Javed Mallick, Atiqur Rahman, Naif Mana Almakayeel\",\"doi\":\"10.1007/s11852-024-01064-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil salinity influences soil quality and other essential plant nutrients, reducing productivity and soil fertility in the Hatiya Upazila (Upazila is the second lowest tier of regional administration in Bangladesh), a coastal district of Noakhali, which is the soil saline vulnerable region of Bangladesh. This study determined the area’s soil salinity level, current crop production condition, and related soil salinity level of Hatiya Upazila. This research aimed to evaluate the effect of soil salinity on soil nutrients and other soil characteristics. To conduct this study, we randomly collected 78 soil samples from the 26 villages with three replicable samples from each sampling location and nine chemical characteristics of the soil samples evaluated. We mapped the soil salinity and other soil properties using the inverse distance weighting (IDW) interpolation techniques in ArcGIS software (version 10.8) environment. Also, we used Pearson’s correlation coefficient and linear regression models to evaluate the impact of soil salinity on the chemical properties of the soil. Results show that 38% of the study area has mild salinity, while 8% of the study area is affected by moderate salinity. In addition, around 4% of the study area is affected by high salinity. The reverse relation occurs when soil salinity is high and phosphorus, total nitrogen, organic matter, and carbon levels are low. According to statistical analysis, soil salinity (EC) is closely related to Na and K (<i>r</i> = 0.422). Soil salinity (EC) negatively affects OM, TN, P, and OC. The pH or sulphur content (EC) had no effect on the salinity of the soil. Among OCs, OM and TN have a favourable and strong relationship among themselves. These findings will benefit many stakeholders from the public and private sectors and local leaders in taking appropriate action to decrease the impact of soil salinity on agricultural production.</p>\",\"PeriodicalId\":48909,\"journal\":{\"name\":\"Journal of Coastal Conservation\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coastal Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11852-024-01064-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coastal Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11852-024-01064-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
The impact of soil salinity on the chemical properties of soil at Hatiya Upazila, a remote area of Noakhali, Bangladesh
Soil salinity influences soil quality and other essential plant nutrients, reducing productivity and soil fertility in the Hatiya Upazila (Upazila is the second lowest tier of regional administration in Bangladesh), a coastal district of Noakhali, which is the soil saline vulnerable region of Bangladesh. This study determined the area’s soil salinity level, current crop production condition, and related soil salinity level of Hatiya Upazila. This research aimed to evaluate the effect of soil salinity on soil nutrients and other soil characteristics. To conduct this study, we randomly collected 78 soil samples from the 26 villages with three replicable samples from each sampling location and nine chemical characteristics of the soil samples evaluated. We mapped the soil salinity and other soil properties using the inverse distance weighting (IDW) interpolation techniques in ArcGIS software (version 10.8) environment. Also, we used Pearson’s correlation coefficient and linear regression models to evaluate the impact of soil salinity on the chemical properties of the soil. Results show that 38% of the study area has mild salinity, while 8% of the study area is affected by moderate salinity. In addition, around 4% of the study area is affected by high salinity. The reverse relation occurs when soil salinity is high and phosphorus, total nitrogen, organic matter, and carbon levels are low. According to statistical analysis, soil salinity (EC) is closely related to Na and K (r = 0.422). Soil salinity (EC) negatively affects OM, TN, P, and OC. The pH or sulphur content (EC) had no effect on the salinity of the soil. Among OCs, OM and TN have a favourable and strong relationship among themselves. These findings will benefit many stakeholders from the public and private sectors and local leaders in taking appropriate action to decrease the impact of soil salinity on agricultural production.
期刊介绍:
The Journal of Coastal Conservation is a scientific journal for the dissemination of both theoretical and applied research on integrated and sustainable management of the terrestrial, coastal and marine environmental interface.
A thorough understanding of both the physical and the human sciences is important to the study of the spatial patterns and processes observed in terrestrial, coastal and marine systems set in the context of past, present and future social and economic developments. This includes multidisciplinary and integrated knowledge and understanding of: physical geography, coastal geomorphology, sediment dynamics, hydrodynamics, soil science, hydrology, plant and animal ecology, vegetation science, biogeography, landscape ecology, recreation and tourism studies, urban and human ecology, coastal engineering and spatial planning, coastal zone management, and marine resource management.