利用平行冰原模型模拟前冰原--斯涅日尼克研究案例

IF 3.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Matjaž Depolli, Manja Žebre, Uroš Stepišnik, Gregor Kosec
{"title":"利用平行冰原模型模拟前冰原--斯涅日尼克研究案例","authors":"Matjaž Depolli, Manja Žebre, Uroš Stepišnik, Gregor Kosec","doi":"10.5194/cp-20-1471-2024","DOIUrl":null,"url":null,"abstract":"Abstract. In this paper, we present a reconstruction of climate conditions during the Last Glacial Maximum on a karst plateau Snežnik, which lies in Dinaric Mountains (southern Slovenia) and bears evidence of glaciation. The reconstruction merges geomorphological ice limits, classified as either clear or unclear, and a computer modelling approach based on the Parallel Ice Sheet Model (PISM). Based on extensive numerical experiments where we studied the agreements between simulated and geomorphological ice extent, we propose using a combination of a high-resolution precipitation model that accounts for orographic precipitation combined with a simple elevation-based temperature model. The geomorphological ice extent can be simulated with climate to be around 6 °C colder than the modern day and with a lower-than-modern-day amount of precipitation, which matches other state-of-the art climate reconstructions for the era. The results indicate that an orographic precipitation model is essential for the accurate simulation of the study area, with moist southern winds from the nearby Adriatic Sea having a predominant effect on the precipitation patterns. Finally, this study shows that transforming climate conditions towards wetter and warmer or drier and colder does not significantly change the conditions for glacier formation.","PeriodicalId":10332,"journal":{"name":"Climate of The Past","volume":"24 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of a former ice field with Parallel Ice Sheet Model – Snežnik study case\",\"authors\":\"Matjaž Depolli, Manja Žebre, Uroš Stepišnik, Gregor Kosec\",\"doi\":\"10.5194/cp-20-1471-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this paper, we present a reconstruction of climate conditions during the Last Glacial Maximum on a karst plateau Snežnik, which lies in Dinaric Mountains (southern Slovenia) and bears evidence of glaciation. The reconstruction merges geomorphological ice limits, classified as either clear or unclear, and a computer modelling approach based on the Parallel Ice Sheet Model (PISM). Based on extensive numerical experiments where we studied the agreements between simulated and geomorphological ice extent, we propose using a combination of a high-resolution precipitation model that accounts for orographic precipitation combined with a simple elevation-based temperature model. The geomorphological ice extent can be simulated with climate to be around 6 °C colder than the modern day and with a lower-than-modern-day amount of precipitation, which matches other state-of-the art climate reconstructions for the era. The results indicate that an orographic precipitation model is essential for the accurate simulation of the study area, with moist southern winds from the nearby Adriatic Sea having a predominant effect on the precipitation patterns. Finally, this study shows that transforming climate conditions towards wetter and warmer or drier and colder does not significantly change the conditions for glacier formation.\",\"PeriodicalId\":10332,\"journal\":{\"name\":\"Climate of The Past\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/cp-20-1471-2024\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/cp-20-1471-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文介绍了末次冰川极盛时期斯内兹尼克岩溶高原气候条件的重建,该高原位于迪纳拉山脉(斯洛文尼亚南部),有冰川作用的证据。重建工作融合了地貌冰界限(分为清晰和不清晰两种)和基于平行冰盖模型(PISM)的计算机建模方法。在广泛的数值实验中,我们研究了模拟冰层范围与地貌冰层范围之间的一致性,在此基础上,我们建议将考虑到地貌降水的高分辨率降水模型与基于海拔的简单温度模型结合起来使用。在模拟地貌冰范围时,气候比现代低约 6 ℃,降水量也比现代低,这与当时其他最先进的气候重建结果相吻合。研究结果表明,要准确模拟研究地区的降水情况,必须使用风向降水模型,来自附近亚得里亚海的潮湿南风对降水模式有主要影响。最后,这项研究表明,气候条件向更湿更暖或更干更冷的方向转变并不会显著改变冰川形成的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of a former ice field with Parallel Ice Sheet Model – Snežnik study case
Abstract. In this paper, we present a reconstruction of climate conditions during the Last Glacial Maximum on a karst plateau Snežnik, which lies in Dinaric Mountains (southern Slovenia) and bears evidence of glaciation. The reconstruction merges geomorphological ice limits, classified as either clear or unclear, and a computer modelling approach based on the Parallel Ice Sheet Model (PISM). Based on extensive numerical experiments where we studied the agreements between simulated and geomorphological ice extent, we propose using a combination of a high-resolution precipitation model that accounts for orographic precipitation combined with a simple elevation-based temperature model. The geomorphological ice extent can be simulated with climate to be around 6 °C colder than the modern day and with a lower-than-modern-day amount of precipitation, which matches other state-of-the art climate reconstructions for the era. The results indicate that an orographic precipitation model is essential for the accurate simulation of the study area, with moist southern winds from the nearby Adriatic Sea having a predominant effect on the precipitation patterns. Finally, this study shows that transforming climate conditions towards wetter and warmer or drier and colder does not significantly change the conditions for glacier formation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Climate of The Past
Climate of The Past 地学-气象与大气科学
CiteScore
7.40
自引率
14.00%
发文量
120
审稿时长
4-8 weeks
期刊介绍: Climate of the Past (CP) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on the climate history of the Earth. CP covers all temporal scales of climate change and variability, from geological time through to multidecadal studies of the last century. Studies focusing mainly on present and future climate are not within scope. The main subject areas are the following: reconstructions of past climate based on instrumental and historical data as well as proxy data from marine and terrestrial (including ice) archives; development and validation of new proxies, improvements of the precision and accuracy of proxy data; theoretical and empirical studies of processes in and feedback mechanisms between all climate system components in relation to past climate change on all space scales and timescales; simulation of past climate and model-based interpretation of palaeoclimate data for a better understanding of present and future climate variability and climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信