使用正则多面体分解和哈恩矩的鲁棒视频散列技术

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Zhenjun Tang, Huijiang Zhuang, Mengzhu Yu, Lv Chen, Xiaoping Liang, Xianquan Zhang
{"title":"使用正则多面体分解和哈恩矩的鲁棒视频散列技术","authors":"Zhenjun Tang, Huijiang Zhuang, Mengzhu Yu, Lv Chen, Xiaoping Liang, Xianquan Zhang","doi":"10.1117/1.jei.33.4.043007","DOIUrl":null,"url":null,"abstract":"Video hashing is an efficient technique for tasks like copy detection and retrieval. This paper utilizes canonical polyadic (CP) decomposition and Hahn moments to design a robust video hashing. The first significant contribution is the secondary frame construction. It uses three weighted techniques to generate three secondary frames for each video group, which can effectively capture features of video frames from different aspects and thus improves discrimination. Another contribution is the deep feature extraction via the ResNet50 and CP decomposition. The use of the ResNet50 can provide rich features and the CP decomposition can learn a compact and discriminative representation from the rich features. In addition, the Hahn moments of secondary frames are taken to construct hash elements. Extensive experiments on the open video dataset demonstrate that the proposed algorithm surpasses several state-of-the-art algorithms in balancing discrimination and robustness.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust video hashing with canonical polyadic decomposition and Hahn moments\",\"authors\":\"Zhenjun Tang, Huijiang Zhuang, Mengzhu Yu, Lv Chen, Xiaoping Liang, Xianquan Zhang\",\"doi\":\"10.1117/1.jei.33.4.043007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video hashing is an efficient technique for tasks like copy detection and retrieval. This paper utilizes canonical polyadic (CP) decomposition and Hahn moments to design a robust video hashing. The first significant contribution is the secondary frame construction. It uses three weighted techniques to generate three secondary frames for each video group, which can effectively capture features of video frames from different aspects and thus improves discrimination. Another contribution is the deep feature extraction via the ResNet50 and CP decomposition. The use of the ResNet50 can provide rich features and the CP decomposition can learn a compact and discriminative representation from the rich features. In addition, the Hahn moments of secondary frames are taken to construct hash elements. Extensive experiments on the open video dataset demonstrate that the proposed algorithm surpasses several state-of-the-art algorithms in balancing discrimination and robustness.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043007\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

视频散列是一种高效的技术,可用于复制检测和检索等任务。本文利用典型多面体(CP)分解和哈恩矩设计了一种稳健的视频散列。第一个重大贡献是二级帧构造。它使用三种加权技术为每个视频组生成三个辅助帧,可以从不同方面有效捕捉视频帧的特征,从而提高辨别能力。另一个贡献是通过 ResNet50 和 CP 分解进行深度特征提取。使用 ResNet50 可以提供丰富的特征,而 CP 分解则可以从丰富的特征中学习到紧凑且具有区分度的表示。此外,次要帧的哈恩矩被用来构建哈希元素。在开放视频数据集上进行的大量实验表明,所提出的算法在兼顾区分度和鲁棒性方面超越了几种最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust video hashing with canonical polyadic decomposition and Hahn moments
Video hashing is an efficient technique for tasks like copy detection and retrieval. This paper utilizes canonical polyadic (CP) decomposition and Hahn moments to design a robust video hashing. The first significant contribution is the secondary frame construction. It uses three weighted techniques to generate three secondary frames for each video group, which can effectively capture features of video frames from different aspects and thus improves discrimination. Another contribution is the deep feature extraction via the ResNet50 and CP decomposition. The use of the ResNet50 can provide rich features and the CP decomposition can learn a compact and discriminative representation from the rich features. In addition, the Hahn moments of secondary frames are taken to construct hash elements. Extensive experiments on the open video dataset demonstrate that the proposed algorithm surpasses several state-of-the-art algorithms in balancing discrimination and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信