非线性开尔文-沃伊特动态断裂模型中的粘弹性悖论

IF 1.1 3区 数学 Q1 MATHEMATICS
Maicol Caponi, Alessandro Carbotti, Francesco Sapio
{"title":"非线性开尔文-沃伊特动态断裂模型中的粘弹性悖论","authors":"Maicol Caponi, Alessandro Carbotti, Francesco Sapio","doi":"10.1007/s00028-024-00989-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider a dynamic model of fracture for viscoelastic materials, in which the constitutive relation, involving the Cauchy stress and the strain tensors, is given in an implicit nonlinear form. We prove the existence of a solution to the associated viscoelastic dynamic system on a prescribed time-dependent cracked domain via a discretization-in-time argument. Moreover, we show that such a solution satisfies an energy-dissipation balance in which the energy used to increase the crack does not appear. As a consequence, in analogy to the linear case this nonlinear model exhibits the so-called <i>viscoelastic paradox</i>.\n</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"14 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The viscoelastic paradox in a nonlinear Kelvin–Voigt type model of dynamic fracture\",\"authors\":\"Maicol Caponi, Alessandro Carbotti, Francesco Sapio\",\"doi\":\"10.1007/s00028-024-00989-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider a dynamic model of fracture for viscoelastic materials, in which the constitutive relation, involving the Cauchy stress and the strain tensors, is given in an implicit nonlinear form. We prove the existence of a solution to the associated viscoelastic dynamic system on a prescribed time-dependent cracked domain via a discretization-in-time argument. Moreover, we show that such a solution satisfies an energy-dissipation balance in which the energy used to increase the crack does not appear. As a consequence, in analogy to the linear case this nonlinear model exhibits the so-called <i>viscoelastic paradox</i>.\\n</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00989-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00989-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了粘弹性材料的断裂动态模型,其中涉及考奇应力和应变张量的构成关系是以隐式非线性形式给出的。通过时间离散论证,我们证明了在规定的随时间变化的裂纹域上相关粘弹性动态系统解的存在性。此外,我们还证明了这种解满足能量耗散平衡,其中不会出现用于增加裂缝的能量。因此,与线性情况类似,这种非线性模型表现出所谓的粘弹性悖论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The viscoelastic paradox in a nonlinear Kelvin–Voigt type model of dynamic fracture

In this paper, we consider a dynamic model of fracture for viscoelastic materials, in which the constitutive relation, involving the Cauchy stress and the strain tensors, is given in an implicit nonlinear form. We prove the existence of a solution to the associated viscoelastic dynamic system on a prescribed time-dependent cracked domain via a discretization-in-time argument. Moreover, we show that such a solution satisfies an energy-dissipation balance in which the energy used to increase the crack does not appear. As a consequence, in analogy to the linear case this nonlinear model exhibits the so-called viscoelastic paradox.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信