Sheng Li, Shupei Wang, I.-Hsuan Ho, Yujie Wang, Li Ma, Changdan Wang
{"title":"利用借土长期减少负荷的演变过程","authors":"Sheng Li, Shupei Wang, I.-Hsuan Ho, Yujie Wang, Li Ma, Changdan Wang","doi":"10.1007/s40999-024-00989-8","DOIUrl":null,"url":null,"abstract":"<p>The effectiveness of load-reduction techniques often diminishes due to creep behavior observed in geomaterials, as loess backfill is used, the load reduction rate of high-filled cut-and-cover tunnels (HFCCTs) after creep will decrease by 10.83%, posing a threat to the long-term stability of deeply buried structures such as HFCCTs. Therefore, a geotechnical solution is crucial to ensuring sustained effectiveness in load-reduction strategies over time. This study utilizes a finite-difference method to examine three promising measures for mitigating creep effects. Our analysis focuses on the time-dependent changes in earth pressure atop the cut-and-cover tunnel (CCT) and the internal distribution of cross-sectional forces, including bending moment, shear force, axial force, and displacement. Results indicate that the creep behavior of load-reduction materials significantly influences the internal force distribution. Furthermore, sustained load reduction is achieved when utilizing low-creep materials like dry sandy gravel as backfill soil, which needs to be borrowed from other sites. Additionally, integrating concrete wedges with load-reduction techniques facilitates a more uniform stress distribution atop CCTs.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"79 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Long-Term Load Reduction Using Borrowed Soil\",\"authors\":\"Sheng Li, Shupei Wang, I.-Hsuan Ho, Yujie Wang, Li Ma, Changdan Wang\",\"doi\":\"10.1007/s40999-024-00989-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effectiveness of load-reduction techniques often diminishes due to creep behavior observed in geomaterials, as loess backfill is used, the load reduction rate of high-filled cut-and-cover tunnels (HFCCTs) after creep will decrease by 10.83%, posing a threat to the long-term stability of deeply buried structures such as HFCCTs. Therefore, a geotechnical solution is crucial to ensuring sustained effectiveness in load-reduction strategies over time. This study utilizes a finite-difference method to examine three promising measures for mitigating creep effects. Our analysis focuses on the time-dependent changes in earth pressure atop the cut-and-cover tunnel (CCT) and the internal distribution of cross-sectional forces, including bending moment, shear force, axial force, and displacement. Results indicate that the creep behavior of load-reduction materials significantly influences the internal force distribution. Furthermore, sustained load reduction is achieved when utilizing low-creep materials like dry sandy gravel as backfill soil, which needs to be borrowed from other sites. Additionally, integrating concrete wedges with load-reduction techniques facilitates a more uniform stress distribution atop CCTs.</p>\",\"PeriodicalId\":50331,\"journal\":{\"name\":\"International Journal of Civil Engineering\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40999-024-00989-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-00989-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Evolution of Long-Term Load Reduction Using Borrowed Soil
The effectiveness of load-reduction techniques often diminishes due to creep behavior observed in geomaterials, as loess backfill is used, the load reduction rate of high-filled cut-and-cover tunnels (HFCCTs) after creep will decrease by 10.83%, posing a threat to the long-term stability of deeply buried structures such as HFCCTs. Therefore, a geotechnical solution is crucial to ensuring sustained effectiveness in load-reduction strategies over time. This study utilizes a finite-difference method to examine three promising measures for mitigating creep effects. Our analysis focuses on the time-dependent changes in earth pressure atop the cut-and-cover tunnel (CCT) and the internal distribution of cross-sectional forces, including bending moment, shear force, axial force, and displacement. Results indicate that the creep behavior of load-reduction materials significantly influences the internal force distribution. Furthermore, sustained load reduction is achieved when utilizing low-creep materials like dry sandy gravel as backfill soil, which needs to be borrowed from other sites. Additionally, integrating concrete wedges with load-reduction techniques facilitates a more uniform stress distribution atop CCTs.
期刊介绍:
International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.