部分有序场和积分域

Order Pub Date : 2024-07-09 DOI:10.1007/s11083-024-09667-9
Jingjing Ma
{"title":"部分有序场和积分域","authors":"Jingjing Ma","doi":"10.1007/s11083-024-09667-9","DOIUrl":null,"url":null,"abstract":"<p>The article studies the division closed partial orders on fields that are algebraic over the field of rational numbers. In particular, the maximal partial orders are described using embeddings from the given field to the field of complex numbers. The <span>\\(O^{*}\\)</span>-fields that are not finite dimensional over <span>\\(\\mathbb {Q}\\)</span> are studied in Section 2 and the <span>\\(n^{th}\\)</span>-root function over totally ordered fields is considered in Section 3.</p>","PeriodicalId":501237,"journal":{"name":"Order","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partially Ordered Fields and Integral Domains\",\"authors\":\"Jingjing Ma\",\"doi\":\"10.1007/s11083-024-09667-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The article studies the division closed partial orders on fields that are algebraic over the field of rational numbers. In particular, the maximal partial orders are described using embeddings from the given field to the field of complex numbers. The <span>\\\\(O^{*}\\\\)</span>-fields that are not finite dimensional over <span>\\\\(\\\\mathbb {Q}\\\\)</span> are studied in Section 2 and the <span>\\\\(n^{th}\\\\)</span>-root function over totally ordered fields is considered in Section 3.</p>\",\"PeriodicalId\":501237,\"journal\":{\"name\":\"Order\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Order\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11083-024-09667-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Order","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11083-024-09667-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文章研究了有理数代数域上的划分封闭偏序。特别地,文章使用从给定域到复数域的嵌入来描述最大偏序。第 2 节研究了在\(\mathbb {Q}\)上不是有限维的\(O^{*}\)场,第 3 节考虑了在完全有序场上的\(n^{th}\)根函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partially Ordered Fields and Integral Domains

The article studies the division closed partial orders on fields that are algebraic over the field of rational numbers. In particular, the maximal partial orders are described using embeddings from the given field to the field of complex numbers. The \(O^{*}\)-fields that are not finite dimensional over \(\mathbb {Q}\) are studied in Section 2 and the \(n^{th}\)-root function over totally ordered fields is considered in Section 3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信