{"title":"用于探索可见光波长的低成本简易网络摄像头光谱仪","authors":"Gary Cahill","doi":"10.1088/1361-6552/ad5d45","DOIUrl":null,"url":null,"abstract":"This paper presents a method for constructing a simple, cost-effective, and versatile spectrometer using readily available materials such as a basic webcam, a DVD, tin foil, a cardboard tube, and a microphone boom arm. Building upon previous designs (Widiatmoko <italic toggle=\"yes\">et al</italic> 2011 <italic toggle=\"yes\">Phys. Educ.</italic>\n<bold>46</bold> 332, Lorenz 2014 <italic toggle=\"yes\">Am. J. Phys.</italic>\n<bold>82</bold> 169–73, Rodrigues <italic toggle=\"yes\">et al</italic> 2016 <italic toggle=\"yes\">Phys. Educ.</italic>\n<bold>51</bold> 014002, Likith <italic toggle=\"yes\">et al</italic> 2021 <italic toggle=\"yes\">J. Opt.</italic>\n<bold>50</bold> 489–94), this spectrometer is mounted on a microphone boom arm, enhancing flexibility in capturing spectra from various angles and distant light sources. The spectrometer, coupled with Theremino Spectrometer V3.1 software, achieves sufficient resolution to measure solar Fraunhofer lines and closely spaced Mercury double lines at 436 nm and 577 nm. The procedure for assembling the spectrometer is detailed, including calibration using a Mercury CFL lamp or phone screens. Results demonstrate the spectrometer’s capability to capture high-resolution spectra of the blue sky and light sources, identifying significant spectral lines. This DIY spectrometer offers an accessible tool for amateur scientists and educators to explore visible light spectra, facilitating both qualitative and quantitative analyses. Also, through measuring the light from phone screens work, perception of colour can be explored.","PeriodicalId":39773,"journal":{"name":"Physics Education","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A low cost and simple webcam spectrometer for exploring the visible wavelengths of light\",\"authors\":\"Gary Cahill\",\"doi\":\"10.1088/1361-6552/ad5d45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for constructing a simple, cost-effective, and versatile spectrometer using readily available materials such as a basic webcam, a DVD, tin foil, a cardboard tube, and a microphone boom arm. Building upon previous designs (Widiatmoko <italic toggle=\\\"yes\\\">et al</italic> 2011 <italic toggle=\\\"yes\\\">Phys. Educ.</italic>\\n<bold>46</bold> 332, Lorenz 2014 <italic toggle=\\\"yes\\\">Am. J. Phys.</italic>\\n<bold>82</bold> 169–73, Rodrigues <italic toggle=\\\"yes\\\">et al</italic> 2016 <italic toggle=\\\"yes\\\">Phys. Educ.</italic>\\n<bold>51</bold> 014002, Likith <italic toggle=\\\"yes\\\">et al</italic> 2021 <italic toggle=\\\"yes\\\">J. Opt.</italic>\\n<bold>50</bold> 489–94), this spectrometer is mounted on a microphone boom arm, enhancing flexibility in capturing spectra from various angles and distant light sources. The spectrometer, coupled with Theremino Spectrometer V3.1 software, achieves sufficient resolution to measure solar Fraunhofer lines and closely spaced Mercury double lines at 436 nm and 577 nm. The procedure for assembling the spectrometer is detailed, including calibration using a Mercury CFL lamp or phone screens. Results demonstrate the spectrometer’s capability to capture high-resolution spectra of the blue sky and light sources, identifying significant spectral lines. This DIY spectrometer offers an accessible tool for amateur scientists and educators to explore visible light spectra, facilitating both qualitative and quantitative analyses. Also, through measuring the light from phone screens work, perception of colour can be explored.\",\"PeriodicalId\":39773,\"journal\":{\"name\":\"Physics Education\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6552/ad5d45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6552/ad5d45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种利用现成材料(如基本网络摄像头、DVD、锡箔纸、纸板管和麦克风吊臂)构建简单、经济、多功能光谱仪的方法。在以往设计的基础上(Widiatmoko et al 2011 Phys.J. Phys.82 169-73,Rodrigues 等人 2016 Phys. Educ.51 014002,Likith 等人 2021 J. Opt.50 489-94)的基础上,将该光谱仪安装在麦克风吊臂上,提高了从不同角度和远处光源捕捉光谱的灵活性。该光谱仪与 Theremino Spectrometer V3.1 软件相结合,具有足够的分辨率,可测量太阳弗劳恩霍夫线以及波长为 436 纳米和 577 纳米的近间隔水星双线。详细介绍了组装光谱仪的步骤,包括使用水星 CFL 灯或手机屏幕进行校准。结果表明,该光谱仪能够捕捉到蓝天和光源的高分辨率光谱,并识别出重要的光谱线。这款 DIY 光谱仪为业余科学家和教育工作者提供了一个探索可见光光谱的便捷工具,有助于进行定性和定量分析。此外,通过测量手机屏幕工作时发出的光线,还可以探索对颜色的感知。
A low cost and simple webcam spectrometer for exploring the visible wavelengths of light
This paper presents a method for constructing a simple, cost-effective, and versatile spectrometer using readily available materials such as a basic webcam, a DVD, tin foil, a cardboard tube, and a microphone boom arm. Building upon previous designs (Widiatmoko et al 2011 Phys. Educ.46 332, Lorenz 2014 Am. J. Phys.82 169–73, Rodrigues et al 2016 Phys. Educ.51 014002, Likith et al 2021 J. Opt.50 489–94), this spectrometer is mounted on a microphone boom arm, enhancing flexibility in capturing spectra from various angles and distant light sources. The spectrometer, coupled with Theremino Spectrometer V3.1 software, achieves sufficient resolution to measure solar Fraunhofer lines and closely spaced Mercury double lines at 436 nm and 577 nm. The procedure for assembling the spectrometer is detailed, including calibration using a Mercury CFL lamp or phone screens. Results demonstrate the spectrometer’s capability to capture high-resolution spectra of the blue sky and light sources, identifying significant spectral lines. This DIY spectrometer offers an accessible tool for amateur scientists and educators to explore visible light spectra, facilitating both qualitative and quantitative analyses. Also, through measuring the light from phone screens work, perception of colour can be explored.
期刊介绍:
Physics Education seeks to serve the physics teaching community and we welcome contributions from teachers. We seek to support the teaching of physics to students aged 11 up to introductory undergraduate level. We aim to provide professional development and support for teachers of physics around the world by providing: a forum for practising teachers to make an active contribution to the physics teaching community; knowledge updates in physics, educational research and relevant wider curriculum developments; and strategies for teaching and classroom management that will engage and motivate students.