广义 K 中值问题的结构性迭代舍入

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Anupam Gupta, Benjamin Moseley, Rudy Zhou
{"title":"广义 K 中值问题的结构性迭代舍入","authors":"Anupam Gupta, Benjamin Moseley, Rudy Zhou","doi":"10.1007/s10107-024-02119-7","DOIUrl":null,"url":null,"abstract":"<p>This paper considers approximation algorithms for generalized <i>k</i>-median problems. These problems can be informally described as <i>k</i>-median with a constant number of extra constraints, and includes <i>k</i>-median with outliers, and knapsack median. Our first contribution is a pseudo-approximation algorithm for generalized <i>k</i>-median that outputs a 6.387-approximate solution, with a constant number of fractional variables. The algorithm builds on the iterative rounding framework introduced by Krishnaswamy, Li, and Sandeep for <i>k</i>-median with outliers as reported (Krishnaswamy et al. in: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018). The main technical innovation is allowing richer constraint sets in the iterative rounding and using the structure of the resulting extreme points. Using our pseudo-approximation algorithm, we give improved approximation algorithms for <i>k</i>-median with outliers and knapsack median. This involves combining our pseudo-approximation with pre- and post-processing steps to round a constant number of fractional variables at a small increase in cost. Our algorithms achieve approximation ratios <span>\\(6.994 + \\epsilon \\)</span> and <span>\\(6.387 + \\epsilon \\)</span> for <i>k</i>-median with outliers and knapsack median, respectively. These improve on the best-known approximation ratio <span>\\(7.081 + \\epsilon \\)</span> for both problems as reported (Krishnaswamy et al. in: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural iterative rounding for generalized k-median problems\",\"authors\":\"Anupam Gupta, Benjamin Moseley, Rudy Zhou\",\"doi\":\"10.1007/s10107-024-02119-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper considers approximation algorithms for generalized <i>k</i>-median problems. These problems can be informally described as <i>k</i>-median with a constant number of extra constraints, and includes <i>k</i>-median with outliers, and knapsack median. Our first contribution is a pseudo-approximation algorithm for generalized <i>k</i>-median that outputs a 6.387-approximate solution, with a constant number of fractional variables. The algorithm builds on the iterative rounding framework introduced by Krishnaswamy, Li, and Sandeep for <i>k</i>-median with outliers as reported (Krishnaswamy et al. in: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018). The main technical innovation is allowing richer constraint sets in the iterative rounding and using the structure of the resulting extreme points. Using our pseudo-approximation algorithm, we give improved approximation algorithms for <i>k</i>-median with outliers and knapsack median. This involves combining our pseudo-approximation with pre- and post-processing steps to round a constant number of fractional variables at a small increase in cost. Our algorithms achieve approximation ratios <span>\\\\(6.994 + \\\\epsilon \\\\)</span> and <span>\\\\(6.387 + \\\\epsilon \\\\)</span> for <i>k</i>-median with outliers and knapsack median, respectively. These improve on the best-known approximation ratio <span>\\\\(7.081 + \\\\epsilon \\\\)</span> for both problems as reported (Krishnaswamy et al. in: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018).</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02119-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02119-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了广义 k 中值问题的近似算法。这些问题可以被非正式地描述为带有恒定数量额外约束的 k-中值问题,包括带有异常值的 k-中值问题和 knapsack 中值问题。我们的第一个贡献是针对广义 k 中值问题提出了一种伪近似算法,它能在分数变量数量不变的情况下输出 6.387 近似解。该算法建立在 Krishnaswamy、Li 和 Sandeep 针对有离群值的 k-median 引入的迭代舍入框架基础上(Krishnaswamy et al:第 50 届 ACM SIGACT 计算理论年度研讨会论文集,2018 年)。主要的技术创新在于允许在迭代舍入中使用更丰富的约束集,并使用由此产生的极值点结构。利用我们的伪逼近算法,我们给出了带离群值的 k-median 和 knapsack median 的改进逼近算法。这包括将我们的伪逼近算法与前处理和后处理步骤相结合,以较小的成本增加对一定数量的小数变量进行舍入。我们的算法分别实现了 k-median with outliers 和 knapsack median 的近似率(6.994 + \epsilon \)和(6.387 + \epsilon \)。对于这两个问题,这些近似比(7.081 + \epsilon \)都有所提高(Krishnaswamy et al:第 50 届 ACM SIGACT 计算理论年度研讨会论文集,2018 年)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structural iterative rounding for generalized k-median problems

Structural iterative rounding for generalized k-median problems

This paper considers approximation algorithms for generalized k-median problems. These problems can be informally described as k-median with a constant number of extra constraints, and includes k-median with outliers, and knapsack median. Our first contribution is a pseudo-approximation algorithm for generalized k-median that outputs a 6.387-approximate solution, with a constant number of fractional variables. The algorithm builds on the iterative rounding framework introduced by Krishnaswamy, Li, and Sandeep for k-median with outliers as reported (Krishnaswamy et al. in: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018). The main technical innovation is allowing richer constraint sets in the iterative rounding and using the structure of the resulting extreme points. Using our pseudo-approximation algorithm, we give improved approximation algorithms for k-median with outliers and knapsack median. This involves combining our pseudo-approximation with pre- and post-processing steps to round a constant number of fractional variables at a small increase in cost. Our algorithms achieve approximation ratios \(6.994 + \epsilon \) and \(6.387 + \epsilon \) for k-median with outliers and knapsack median, respectively. These improve on the best-known approximation ratio \(7.081 + \epsilon \) for both problems as reported (Krishnaswamy et al. in: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信