Tom Wanzek, Hannah McIntyre, Elisabeth Hawley, Rula Deeb, Dorin Bogdan, Charles Shaefer, Bill DiGuiseppi, Amanda Struse, Trever Schwichtenberg, Jennifer Field
{"title":"评估地下水和地表水样本中 PFAS 浓度的潜在偏差","authors":"Tom Wanzek, Hannah McIntyre, Elisabeth Hawley, Rula Deeb, Dorin Bogdan, Charles Shaefer, Bill DiGuiseppi, Amanda Struse, Trever Schwichtenberg, Jennifer Field","doi":"10.1111/gwmr.12669","DOIUrl":null,"url":null,"abstract":"<p>Per- and polyfluoroalkyl substances (PFAS) encompass a large group of recalcitrant anthropogenic compounds that have been used in a variety of consumer and industrial products and processes over many decades. Drinking water standards were recently finalized for two PFAS at low nanogram per liter concentrations. Due to the widespread use of PFAS and low health-based thresholds, a literature review and laboratory and field studies were conducted to assess several potential sources of bias in PFAS concentrations. Fluoropolymers are commonly present in equipment, products, and materials used during field sampling, potentially leading to false positive results. Laboratory results confirmed the presence of PFAS in multiple commonly used field materials. However, best practices can be used to limit pathways for cross contamination. Laboratory-specified hold times and sample storage temperatures are scientifically founded and adequately prevent bias due to PFAS sorption to sampling containers or partial degradation of some PFAS to form others. PFAS are also known to accumulate at the air-water interface and other interfaces. Results from laboratory and field studies indicate that PFAS enrichment in foam and in the surface microlayer does occur. However, the effect of this phenomenon is within the range of analytical and spatial sampling variability and therefore a change in sampling procedures is not needed. Findings were distilled into science-based and practical recommendations to minimize bias during PFAS sampling without incurring unnecessary cost and effort.</p>","PeriodicalId":55081,"journal":{"name":"Ground Water Monitoring and Remediation","volume":"44 3","pages":"28-37"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Potential Bias in PFAS Concentrations in Groundwater and Surface Water Samples\",\"authors\":\"Tom Wanzek, Hannah McIntyre, Elisabeth Hawley, Rula Deeb, Dorin Bogdan, Charles Shaefer, Bill DiGuiseppi, Amanda Struse, Trever Schwichtenberg, Jennifer Field\",\"doi\":\"10.1111/gwmr.12669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Per- and polyfluoroalkyl substances (PFAS) encompass a large group of recalcitrant anthropogenic compounds that have been used in a variety of consumer and industrial products and processes over many decades. Drinking water standards were recently finalized for two PFAS at low nanogram per liter concentrations. Due to the widespread use of PFAS and low health-based thresholds, a literature review and laboratory and field studies were conducted to assess several potential sources of bias in PFAS concentrations. Fluoropolymers are commonly present in equipment, products, and materials used during field sampling, potentially leading to false positive results. Laboratory results confirmed the presence of PFAS in multiple commonly used field materials. However, best practices can be used to limit pathways for cross contamination. Laboratory-specified hold times and sample storage temperatures are scientifically founded and adequately prevent bias due to PFAS sorption to sampling containers or partial degradation of some PFAS to form others. PFAS are also known to accumulate at the air-water interface and other interfaces. Results from laboratory and field studies indicate that PFAS enrichment in foam and in the surface microlayer does occur. However, the effect of this phenomenon is within the range of analytical and spatial sampling variability and therefore a change in sampling procedures is not needed. Findings were distilled into science-based and practical recommendations to minimize bias during PFAS sampling without incurring unnecessary cost and effort.</p>\",\"PeriodicalId\":55081,\"journal\":{\"name\":\"Ground Water Monitoring and Remediation\",\"volume\":\"44 3\",\"pages\":\"28-37\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ground Water Monitoring and Remediation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gwmr.12669\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ground Water Monitoring and Remediation","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gwmr.12669","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Assessing Potential Bias in PFAS Concentrations in Groundwater and Surface Water Samples
Per- and polyfluoroalkyl substances (PFAS) encompass a large group of recalcitrant anthropogenic compounds that have been used in a variety of consumer and industrial products and processes over many decades. Drinking water standards were recently finalized for two PFAS at low nanogram per liter concentrations. Due to the widespread use of PFAS and low health-based thresholds, a literature review and laboratory and field studies were conducted to assess several potential sources of bias in PFAS concentrations. Fluoropolymers are commonly present in equipment, products, and materials used during field sampling, potentially leading to false positive results. Laboratory results confirmed the presence of PFAS in multiple commonly used field materials. However, best practices can be used to limit pathways for cross contamination. Laboratory-specified hold times and sample storage temperatures are scientifically founded and adequately prevent bias due to PFAS sorption to sampling containers or partial degradation of some PFAS to form others. PFAS are also known to accumulate at the air-water interface and other interfaces. Results from laboratory and field studies indicate that PFAS enrichment in foam and in the surface microlayer does occur. However, the effect of this phenomenon is within the range of analytical and spatial sampling variability and therefore a change in sampling procedures is not needed. Findings were distilled into science-based and practical recommendations to minimize bias during PFAS sampling without incurring unnecessary cost and effort.
期刊介绍:
Since its inception in 1981, Groundwater Monitoring & Remediation® has been a resource for researchers and practitioners in the field. It is a quarterly journal that offers the best in application oriented, peer-reviewed papers together with insightful articles from the practitioner''s perspective. Each issue features papers containing cutting-edge information on treatment technology, columns by industry experts, news briefs, and equipment news. GWMR plays a unique role in advancing the practice of the groundwater monitoring and remediation field by providing forward-thinking research with practical solutions.