零散限价市场的流体限价

Johannes Muhle-Karbe, Eyal Neuman, Yonatan Shadmi
{"title":"零散限价市场的流体限价","authors":"Johannes Muhle-Karbe, Eyal Neuman, Yonatan Shadmi","doi":"arxiv-2407.04354","DOIUrl":null,"url":null,"abstract":"Maglaras, Moallemi, and Zheng (2021) have introduced a flexible queueing\nmodel for fragmented limit-order markets, whose fluid limit remains remarkably\ntractable. In the present study we prove that, in the limit of small and\nfrequent orders, the discrete system indeed converges to the fluid limit, which\nis characterized by a system of coupled nonlinear ODEs with singular\ncoefficients at the origin. Moreover, we establish that the fluid system is\nasymptotically stable for an arbitrary number of limit order books in that,\nover time, it converges to the stationary equilibrium state studied by Maglaras\net al. (2021).","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid-Limits of Fragmented Limit-Order Markets\",\"authors\":\"Johannes Muhle-Karbe, Eyal Neuman, Yonatan Shadmi\",\"doi\":\"arxiv-2407.04354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maglaras, Moallemi, and Zheng (2021) have introduced a flexible queueing\\nmodel for fragmented limit-order markets, whose fluid limit remains remarkably\\ntractable. In the present study we prove that, in the limit of small and\\nfrequent orders, the discrete system indeed converges to the fluid limit, which\\nis characterized by a system of coupled nonlinear ODEs with singular\\ncoefficients at the origin. Moreover, we establish that the fluid system is\\nasymptotically stable for an arbitrary number of limit order books in that,\\nover time, it converges to the stationary equilibrium state studied by Maglaras\\net al. (2021).\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.04354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.04354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Maglaras、Moallemi 和 Zheng(2021 年)为碎片化限价订单市场引入了一个灵活的排队模型,该模型的流体极限仍然非常容易理解。在本研究中,我们证明了在小订单和频繁订单的极限情况下,离散系统确实收敛于流体极限,其特征是在原点处具有奇异系数的耦合非线性 ODE 系统。此外,我们还确定,对于任意数量的限价订单簿,流体系统是渐近稳定的,即随着时间的推移,它会收敛到 Maglaraset 等人(2021 年)研究的静态平衡状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluid-Limits of Fragmented Limit-Order Markets
Maglaras, Moallemi, and Zheng (2021) have introduced a flexible queueing model for fragmented limit-order markets, whose fluid limit remains remarkably tractable. In the present study we prove that, in the limit of small and frequent orders, the discrete system indeed converges to the fluid limit, which is characterized by a system of coupled nonlinear ODEs with singular coefficients at the origin. Moreover, we establish that the fluid system is asymptotically stable for an arbitrary number of limit order books in that, over time, it converges to the stationary equilibrium state studied by Maglaras et al. (2021).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信