连续时间市场模型的二阶埃舍尔马丁格尔密度

Tahir Choulli, Ella Elazkany, Michèle Vanmaele
{"title":"连续时间市场模型的二阶埃舍尔马丁格尔密度","authors":"Tahir Choulli, Ella Elazkany, Michèle Vanmaele","doi":"arxiv-2407.03960","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the second-order Esscher pricing notion for\ncontinuous-time models. Depending whether the stock price $S$ or its logarithm\nis the main driving noise/shock in the Esscher definition, we obtained two\nclasses of second-order Esscher densities called linear class and exponential\nclass respectively. Using the semimartingale characteristics to parametrize\n$S$, we characterize the second-order Esscher densities (exponential and\nlinear) using pointwise equations. The role of the second order concept is\nhighlighted in many manners and the relationship between the two classes is\nsingled out for the one-dimensional case. Furthermore, when $S$ is a compound\nPoisson model, we show how both classes are related to the\nDelbaen-Haenzendonck's risk-neutral measure. Afterwards, we restrict our model\n$S$ to follow the jump-diffusion model, for simplicity only, and address the\nbounds of the stochastic Esscher pricing intervals. In particular, no matter\nwhat is the Esscher class, we prove that both bounds (upper and lower) are\nsolutions to the same linear backward stochastic differential equation (BSDE\nhereafter for short) but with two different constraints. This shows that BSDEs\nwith constraints appear also in a setting beyond the classical cases of\nconstraints on gain-processes or constraints on portfolios. We prove that our\nresulting constrained BSDEs have solutions in our framework for a large class\nof claims' payoffs including any bounded claim, in contrast to the literature,\nand we single out the monotonic sequence of BSDEs that ``naturally\" approximate\nit as well.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The second-order Esscher martingale densities for continuous-time market models\",\"authors\":\"Tahir Choulli, Ella Elazkany, Michèle Vanmaele\",\"doi\":\"arxiv-2407.03960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the second-order Esscher pricing notion for\\ncontinuous-time models. Depending whether the stock price $S$ or its logarithm\\nis the main driving noise/shock in the Esscher definition, we obtained two\\nclasses of second-order Esscher densities called linear class and exponential\\nclass respectively. Using the semimartingale characteristics to parametrize\\n$S$, we characterize the second-order Esscher densities (exponential and\\nlinear) using pointwise equations. The role of the second order concept is\\nhighlighted in many manners and the relationship between the two classes is\\nsingled out for the one-dimensional case. Furthermore, when $S$ is a compound\\nPoisson model, we show how both classes are related to the\\nDelbaen-Haenzendonck's risk-neutral measure. Afterwards, we restrict our model\\n$S$ to follow the jump-diffusion model, for simplicity only, and address the\\nbounds of the stochastic Esscher pricing intervals. In particular, no matter\\nwhat is the Esscher class, we prove that both bounds (upper and lower) are\\nsolutions to the same linear backward stochastic differential equation (BSDE\\nhereafter for short) but with two different constraints. This shows that BSDEs\\nwith constraints appear also in a setting beyond the classical cases of\\nconstraints on gain-processes or constraints on portfolios. We prove that our\\nresulting constrained BSDEs have solutions in our framework for a large class\\nof claims' payoffs including any bounded claim, in contrast to the literature,\\nand we single out the monotonic sequence of BSDEs that ``naturally\\\" approximate\\nit as well.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了连续时间模型的二阶埃舍尔定价概念。根据股价 $S$ 或其对数是 Esscher 定义中的主要驱动噪声/冲击,我们得到了两类二阶 Esscher 密度,分别称为线性类和指数类。利用半马勒特征对$S$进行参数化,我们利用点式方程描述了二阶埃舍尔密度(指数级和线性级)的特征。二阶概念的作用在许多方面都得到了强调,而且在一维情况下,这两类之间的关系也得到了梳理。此外,当 $S$ 是复合泊松模型时,我们展示了这两类模型与 Delbaen-Haenzendonck 的风险中性度量之间的关系。之后,为了简单起见,我们将模型$S$限定为跳跃-扩散模型,并讨论了随机埃舍尔定价区间的边界。特别是,无论埃舍尔类是什么,我们都证明了两个边界(上边界和下边界)都是同一个线性后向随机微分方程(以下简称 BSDE)的解,但有两个不同的约束条件。这表明,带有约束条件的 BSDE 也出现在增益过程约束条件或投资组合约束条件的经典案例之外。我们证明,在我们的框架中,我们所得出的约束 BSDE 对于包括任何有界索赔在内的一大类索赔的报酬都有解,这与文献中的情况截然不同,而且我们还找出了 "自然 "逼近它的 BSDE 的单调序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The second-order Esscher martingale densities for continuous-time market models
In this paper, we introduce the second-order Esscher pricing notion for continuous-time models. Depending whether the stock price $S$ or its logarithm is the main driving noise/shock in the Esscher definition, we obtained two classes of second-order Esscher densities called linear class and exponential class respectively. Using the semimartingale characteristics to parametrize $S$, we characterize the second-order Esscher densities (exponential and linear) using pointwise equations. The role of the second order concept is highlighted in many manners and the relationship between the two classes is singled out for the one-dimensional case. Furthermore, when $S$ is a compound Poisson model, we show how both classes are related to the Delbaen-Haenzendonck's risk-neutral measure. Afterwards, we restrict our model $S$ to follow the jump-diffusion model, for simplicity only, and address the bounds of the stochastic Esscher pricing intervals. In particular, no matter what is the Esscher class, we prove that both bounds (upper and lower) are solutions to the same linear backward stochastic differential equation (BSDE hereafter for short) but with two different constraints. This shows that BSDEs with constraints appear also in a setting beyond the classical cases of constraints on gain-processes or constraints on portfolios. We prove that our resulting constrained BSDEs have solutions in our framework for a large class of claims' payoffs including any bounded claim, in contrast to the literature, and we single out the monotonic sequence of BSDEs that ``naturally" approximate it as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信