凸风险度量下的变异偏好最优对冲

Marcelo Righi
{"title":"凸风险度量下的变异偏好最优对冲","authors":"Marcelo Righi","doi":"arxiv-2407.03431","DOIUrl":null,"url":null,"abstract":"We expose a theoretical hedging optimization framework with variational\npreferences under convex risk measures. We explore a general dual\nrepresentation for the composition between risk measures and utilities. We\nstudy the properties of the optimization problem as a convex and monotone map\nper se. We also derive results for optimality and indifference pricing\nconditions. We also explore particular examples inside our setup.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal hedging with variational preferences under convex risk measures\",\"authors\":\"Marcelo Righi\",\"doi\":\"arxiv-2407.03431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We expose a theoretical hedging optimization framework with variational\\npreferences under convex risk measures. We explore a general dual\\nrepresentation for the composition between risk measures and utilities. We\\nstudy the properties of the optimization problem as a convex and monotone map\\nper se. We also derive results for optimality and indifference pricing\\nconditions. We also explore particular examples inside our setup.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.03431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们揭示了一个在凸风险度量下具有变分偏好的理论对冲优化框架。我们探讨了风险度量与效用之间构成的一般对偶表示法。我们研究了优化问题作为凸和单调映射器的特性。我们还推导了最优性和冷漠定价条件的结果。我们还探讨了我们设置中的特殊例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal hedging with variational preferences under convex risk measures
We expose a theoretical hedging optimization framework with variational preferences under convex risk measures. We explore a general dual representation for the composition between risk measures and utilities. We study the properties of the optimization problem as a convex and monotone map per se. We also derive results for optimality and indifference pricing conditions. We also explore particular examples inside our setup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信