{"title":"布莱克-斯科尔斯模型中亚洲期权波动率的次引导修正","authors":"Dan Pirjol","doi":"arxiv-2407.05142","DOIUrl":null,"url":null,"abstract":"The short maturity limit $T\\to 0$ for the implied volatility of an Asian\noption in the Black-Scholes model is determined by the large deviations\nproperty for the time-average of the geometric Brownian motion. In this note we\nderive the subleading $O(T)$ correction to this implied volatility, using an\nasymptotic expansion for the Hartman-Watson distribution. The result is used to\ncompute subleading corrections to Asian options prices in a small maturity\nexpansion, sharpening the leading order result obtained using large deviations\ntheory. We demonstrate good numerical agreement with precise benchmarks for\nAsian options pricing in the Black-Scholes model.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subleading correction to the Asian options volatility in the Black-Scholes model\",\"authors\":\"Dan Pirjol\",\"doi\":\"arxiv-2407.05142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The short maturity limit $T\\\\to 0$ for the implied volatility of an Asian\\noption in the Black-Scholes model is determined by the large deviations\\nproperty for the time-average of the geometric Brownian motion. In this note we\\nderive the subleading $O(T)$ correction to this implied volatility, using an\\nasymptotic expansion for the Hartman-Watson distribution. The result is used to\\ncompute subleading corrections to Asian options prices in a small maturity\\nexpansion, sharpening the leading order result obtained using large deviations\\ntheory. We demonstrate good numerical agreement with precise benchmarks for\\nAsian options pricing in the Black-Scholes model.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.05142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.05142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Subleading correction to the Asian options volatility in the Black-Scholes model
The short maturity limit $T\to 0$ for the implied volatility of an Asian
option in the Black-Scholes model is determined by the large deviations
property for the time-average of the geometric Brownian motion. In this note we
derive the subleading $O(T)$ correction to this implied volatility, using an
asymptotic expansion for the Hartman-Watson distribution. The result is used to
compute subleading corrections to Asian options prices in a small maturity
expansion, sharpening the leading order result obtained using large deviations
theory. We demonstrate good numerical agreement with precise benchmarks for
Asian options pricing in the Black-Scholes model.