新型三部分咽及其在共生海洋线虫(Desmodoroidea, Stilbonematinae)中的平行进化

IF 1.9 3区 生物学 Q3 EVOLUTIONARY BIOLOGY
Philipp Pröts, Veronica Novotny-Diermayr, Jörg A. Ott
{"title":"新型三部分咽及其在共生海洋线虫(Desmodoroidea, Stilbonematinae)中的平行进化","authors":"Philipp Pröts, Veronica Novotny-Diermayr, Jörg A. Ott","doi":"10.1007/s13127-024-00643-0","DOIUrl":null,"url":null,"abstract":"<p>Stilbonematinae are nematodes commonly found in shallow marine sands. They are overgrown by a genus- and species-specific coat of chemoautotrophic sulphur-oxidizing ectosymbiotic bacteria which profit from the vertical migration of their hosts through the chemocline by alternately gaining access to oxidizing and reducing chemical species, while in return, the host feeds on its symbionts. The subfamily exhibits a large morphological variability; e.g. the anterior pharynx is cylindrical in genera possessing a voluminous coat, but species with a bacterial monolayer possess a distinctly swollen corpus and therefore a tripartite pharynx. Since 18S-based phylogenetic analyses do not show close relationships between corpus-bearing species, we investigated the pharynx morphology using phalloidin staining in combination with confocal laser scanning microscopy, transmission electron microscopy and light microscopy in order to assess an independent evolution. The class-wide stable position of the subventral pharynx ampullae was used as a morphological marker. Ampullae are positioned at the anterior-most end of the isthmus in <i>Cyathorobbea</i>, further posterior in <i>Catanema</i> and <i>Robbea</i> and inside the corpus in <i>Laxus oneistus</i>. We therefore conclude an independent evolution of corpus enlargements within Stilbonematinae. This further suggests that pharynx morphology is driven by the volume of the symbiotic bacterial coat rather than phylogeny. Based on an existing mathematical model, an enlarged corpus should enable its bearer to ingest food in smaller quantities, in gourmet style, whereas a cylindrical pharynx would restrict its bearer to ancestral gourmand feeding. A review of pharynx types of Nematoda showed that the Stilbonematinae pharynx is substantially different compared to other tripartite pharynges. The lack of pharyngeal tubes and valves, the undivided corpus and evenly distributed nuclei in the isthmus warrant the definition of the “stilbonematoid” three-part pharynx.</p>","PeriodicalId":54666,"journal":{"name":"Organisms Diversity & Evolution","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel three-part pharynx and its parallel evolution within symbiotic marine nematodes (Desmodoroidea, Stilbonematinae)\",\"authors\":\"Philipp Pröts, Veronica Novotny-Diermayr, Jörg A. Ott\",\"doi\":\"10.1007/s13127-024-00643-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stilbonematinae are nematodes commonly found in shallow marine sands. They are overgrown by a genus- and species-specific coat of chemoautotrophic sulphur-oxidizing ectosymbiotic bacteria which profit from the vertical migration of their hosts through the chemocline by alternately gaining access to oxidizing and reducing chemical species, while in return, the host feeds on its symbionts. The subfamily exhibits a large morphological variability; e.g. the anterior pharynx is cylindrical in genera possessing a voluminous coat, but species with a bacterial monolayer possess a distinctly swollen corpus and therefore a tripartite pharynx. Since 18S-based phylogenetic analyses do not show close relationships between corpus-bearing species, we investigated the pharynx morphology using phalloidin staining in combination with confocal laser scanning microscopy, transmission electron microscopy and light microscopy in order to assess an independent evolution. The class-wide stable position of the subventral pharynx ampullae was used as a morphological marker. Ampullae are positioned at the anterior-most end of the isthmus in <i>Cyathorobbea</i>, further posterior in <i>Catanema</i> and <i>Robbea</i> and inside the corpus in <i>Laxus oneistus</i>. We therefore conclude an independent evolution of corpus enlargements within Stilbonematinae. This further suggests that pharynx morphology is driven by the volume of the symbiotic bacterial coat rather than phylogeny. Based on an existing mathematical model, an enlarged corpus should enable its bearer to ingest food in smaller quantities, in gourmet style, whereas a cylindrical pharynx would restrict its bearer to ancestral gourmand feeding. A review of pharynx types of Nematoda showed that the Stilbonematinae pharynx is substantially different compared to other tripartite pharynges. The lack of pharyngeal tubes and valves, the undivided corpus and evenly distributed nuclei in the isthmus warrant the definition of the “stilbonematoid” three-part pharynx.</p>\",\"PeriodicalId\":54666,\"journal\":{\"name\":\"Organisms Diversity & Evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organisms Diversity & Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13127-024-00643-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organisms Diversity & Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13127-024-00643-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Stilbonematinae 是一种常见于浅海沙地的线虫。这些细菌通过交替获取氧化性和还原性化学物质,从宿主在化学跃层中的垂直迁移中获益,而宿主则以共生细菌为食。该亚科表现出很大的形态变异性;例如,具有大量被膜的属的咽前部呈圆柱形,但具有细菌单层的属则具有明显肿胀的菌体,因此咽部呈三方状。由于基于 18S 的系统进化分析未显示出含菌体物种之间的密切关系,因此我们使用噬菌体染色法并结合共聚焦激光扫描显微镜、透射电子显微镜和光学显微镜对咽部形态进行了研究,以评估其独立进化情况。咽下安瓿的全类稳定位置被用作形态标记。咽部安瓿位于 Cyathorobbea 的咽峡最前端,Catanema 和 Robbea 的咽部安瓿位于咽峡后部,Laxus oneistus 的咽部安瓿位于咽部内部。因此,我们得出结论认为,喙体的增大是 Stilbonematinae 内部独立演化的结果。这进一步表明,咽部形态是由共生菌衣的体积而不是系统发育驱动的。根据现有的数学模型,增大的菌体应能使其携带者以美食家的方式摄取较少量的食物,而圆柱形咽则会限制其携带者以祖先美食家的方式摄取食物。对线虫纲咽部类型的研究表明,Stilbonematinae 的咽部与其他三方咽部相比有很大不同。由于没有咽管和咽瓣、咽体不分裂、咽峡中的咽核均匀分布,因此可以定义为 "镫骨咽类 "三部分咽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel three-part pharynx and its parallel evolution within symbiotic marine nematodes (Desmodoroidea, Stilbonematinae)

A novel three-part pharynx and its parallel evolution within symbiotic marine nematodes (Desmodoroidea, Stilbonematinae)

Stilbonematinae are nematodes commonly found in shallow marine sands. They are overgrown by a genus- and species-specific coat of chemoautotrophic sulphur-oxidizing ectosymbiotic bacteria which profit from the vertical migration of their hosts through the chemocline by alternately gaining access to oxidizing and reducing chemical species, while in return, the host feeds on its symbionts. The subfamily exhibits a large morphological variability; e.g. the anterior pharynx is cylindrical in genera possessing a voluminous coat, but species with a bacterial monolayer possess a distinctly swollen corpus and therefore a tripartite pharynx. Since 18S-based phylogenetic analyses do not show close relationships between corpus-bearing species, we investigated the pharynx morphology using phalloidin staining in combination with confocal laser scanning microscopy, transmission electron microscopy and light microscopy in order to assess an independent evolution. The class-wide stable position of the subventral pharynx ampullae was used as a morphological marker. Ampullae are positioned at the anterior-most end of the isthmus in Cyathorobbea, further posterior in Catanema and Robbea and inside the corpus in Laxus oneistus. We therefore conclude an independent evolution of corpus enlargements within Stilbonematinae. This further suggests that pharynx morphology is driven by the volume of the symbiotic bacterial coat rather than phylogeny. Based on an existing mathematical model, an enlarged corpus should enable its bearer to ingest food in smaller quantities, in gourmet style, whereas a cylindrical pharynx would restrict its bearer to ancestral gourmand feeding. A review of pharynx types of Nematoda showed that the Stilbonematinae pharynx is substantially different compared to other tripartite pharynges. The lack of pharyngeal tubes and valves, the undivided corpus and evenly distributed nuclei in the isthmus warrant the definition of the “stilbonematoid” three-part pharynx.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organisms Diversity & Evolution
Organisms Diversity & Evolution 生物-进化生物学
CiteScore
3.60
自引率
0.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: Organisms Diversity & Evolution (published by the Gesellschaft fuer Biologische Systematik, GfBS) is devoted to furthering our understanding of all aspects of organismal diversity and evolution. Papers addressing evolutionary aspects of the systematics, phylogenetics, morphology and development, taxonomy and biogeography of any group of eukaryotes, recent or fossil, are welcome. Priority is given to papers with a strong evolutionary and/or phylogenetic focus. Manuscripts presenting important methods or tools or addressing key theoretical, methodological, and philosophical principles related to the study of organismal diversity are also welcome. Species descriptions are welcome as parts of a manuscript of broader interest that strive to integrate such taxonomic information with the other areas of interest mentioned above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信