利用多模态数据提高住院患者事件时间表的精确性。

Gabriel Frattallone-Llado, Juyong Kim, Cheng Cheng, Diego Salazar, Smitha Edakalavan, Jeremy C Weiss
{"title":"利用多模态数据提高住院患者事件时间表的精确性。","authors":"Gabriel Frattallone-Llado, Juyong Kim, Cheng Cheng, Diego Salazar, Smitha Edakalavan, Jeremy C Weiss","doi":"10.1007/978-981-97-2238-9_25","DOIUrl":null,"url":null,"abstract":"<p><p>Textual data often describe events in time but frequently contain little information about their specific timing, whereas complementary structured data streams may have precise timestamps but may omit important contextual information. We investigate the problem in healthcare, where we produce clinician annotations of discharge summaries, with access to either unimodal (text) or multimodal (text and tabular) data, (i) to determine event interval timings and (ii) to train multimodal language models to locate those events in time. We find our annotation procedures, dashboard tools, and annotations result in high-quality timestamps. Specifically, the multimodal approach produces more precise timestamping, with uncertainties of the lower bound, upper bounds, and duration reduced by 42% (95% CI 34-51%), 36% (95% CI 28-44%), and 13% (95% CI 10-17%), respectively. In the classification version of our task, we find that, trained on our annotations, our multimodal BERT model outperforms unimodal BERT model and Llama-2 encoder-decoder models with improvements in F1 scores for upper (10% and 61%, respectively) and lower bounds (8% and 56%, respectively). The code for the annotation tool and the BERT model is available (link).</p>","PeriodicalId":517371,"journal":{"name":"Advances in knowledge discovery and data mining : ... Pacific-Asia Conference, PAKDD ..., proceedings. Pacific-Asia Conference on Knowledge Discovery and Data Mining","volume":"14648 ","pages":"322-334"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228894/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using Multimodal Data to Improve Precision of Inpatient Event Timelines.\",\"authors\":\"Gabriel Frattallone-Llado, Juyong Kim, Cheng Cheng, Diego Salazar, Smitha Edakalavan, Jeremy C Weiss\",\"doi\":\"10.1007/978-981-97-2238-9_25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Textual data often describe events in time but frequently contain little information about their specific timing, whereas complementary structured data streams may have precise timestamps but may omit important contextual information. We investigate the problem in healthcare, where we produce clinician annotations of discharge summaries, with access to either unimodal (text) or multimodal (text and tabular) data, (i) to determine event interval timings and (ii) to train multimodal language models to locate those events in time. We find our annotation procedures, dashboard tools, and annotations result in high-quality timestamps. Specifically, the multimodal approach produces more precise timestamping, with uncertainties of the lower bound, upper bounds, and duration reduced by 42% (95% CI 34-51%), 36% (95% CI 28-44%), and 13% (95% CI 10-17%), respectively. In the classification version of our task, we find that, trained on our annotations, our multimodal BERT model outperforms unimodal BERT model and Llama-2 encoder-decoder models with improvements in F1 scores for upper (10% and 61%, respectively) and lower bounds (8% and 56%, respectively). The code for the annotation tool and the BERT model is available (link).</p>\",\"PeriodicalId\":517371,\"journal\":{\"name\":\"Advances in knowledge discovery and data mining : ... Pacific-Asia Conference, PAKDD ..., proceedings. Pacific-Asia Conference on Knowledge Discovery and Data Mining\",\"volume\":\"14648 \",\"pages\":\"322-334\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11228894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in knowledge discovery and data mining : ... Pacific-Asia Conference, PAKDD ..., proceedings. Pacific-Asia Conference on Knowledge Discovery and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-981-97-2238-9_25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in knowledge discovery and data mining : ... Pacific-Asia Conference, PAKDD ..., proceedings. Pacific-Asia Conference on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-981-97-2238-9_25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本数据通常按时间描述事件,但往往很少包含有关其具体时间的信息,而互补的结构化数据流可能有精确的时间戳,但可能遗漏重要的上下文信息。我们研究了医疗保健领域的这一问题,我们通过访问单模态(文本)或多模态(文本和表格)数据,对出院摘要进行临床医生注释,(i) 确定事件间隔时间,(ii) 训练多模态语言模型,以便及时定位这些事件。我们发现,我们的注释程序、仪表板工具和注释可生成高质量的时间戳。具体来说,多模态方法产生了更精确的时间戳,下限、上限和持续时间的不确定性分别降低了 42% (95% CI 34-51%)、36% (95% CI 28-44%) 和 13% (95% CI 10-17%)。在分类版本的任务中,我们发现,在我们的注释上进行训练后,我们的多模态 BERT 模型优于单模态 BERT 模型和 Llama-2 编码器-解码器模型,在上限(分别为 10%和 61%)和下限(分别为 8%和 56%)方面的 F1 分数有所提高。注释工具和 BERT 模型的代码已发布(链接)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Multimodal Data to Improve Precision of Inpatient Event Timelines.

Textual data often describe events in time but frequently contain little information about their specific timing, whereas complementary structured data streams may have precise timestamps but may omit important contextual information. We investigate the problem in healthcare, where we produce clinician annotations of discharge summaries, with access to either unimodal (text) or multimodal (text and tabular) data, (i) to determine event interval timings and (ii) to train multimodal language models to locate those events in time. We find our annotation procedures, dashboard tools, and annotations result in high-quality timestamps. Specifically, the multimodal approach produces more precise timestamping, with uncertainties of the lower bound, upper bounds, and duration reduced by 42% (95% CI 34-51%), 36% (95% CI 28-44%), and 13% (95% CI 10-17%), respectively. In the classification version of our task, we find that, trained on our annotations, our multimodal BERT model outperforms unimodal BERT model and Llama-2 encoder-decoder models with improvements in F1 scores for upper (10% and 61%, respectively) and lower bounds (8% and 56%, respectively). The code for the annotation tool and the BERT model is available (link).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信