{"title":"正特征中 1 叶的 MMP 的反例。","authors":"Fabio Bernasconi","doi":"10.1007/s11565-024-00488-7","DOIUrl":null,"url":null,"abstract":"<div><p>We show that many statements of the Minimal Model Program, including the cone theorem, the base point free theorem and the existence of Mori fibre spaces, fail for 1-foliated surface pairs <span>\\((X,\\mathcal {F})\\)</span> with canonical singularities in characteristic <span>\\(p>0\\)</span>.\n</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"70 3","pages":"631 - 641"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232358/pdf/","citationCount":"0","resultStr":"{\"title\":\"Counterexamples to the MMP for 1-foliations in positive characteristic\",\"authors\":\"Fabio Bernasconi\",\"doi\":\"10.1007/s11565-024-00488-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that many statements of the Minimal Model Program, including the cone theorem, the base point free theorem and the existence of Mori fibre spaces, fail for 1-foliated surface pairs <span>\\\\((X,\\\\mathcal {F})\\\\)</span> with canonical singularities in characteristic <span>\\\\(p>0\\\\)</span>.\\n</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"70 3\",\"pages\":\"631 - 641\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232358/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00488-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00488-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,对于在特征 p > 0 中具有典范奇点的单叶曲面对 ( X , F ) 而言,极小模型计划的许多声明,包括圆锥定理、无基点定理和莫里纤维空间的存在,都是失败的。
Counterexamples to the MMP for 1-foliations in positive characteristic
We show that many statements of the Minimal Model Program, including the cone theorem, the base point free theorem and the existence of Mori fibre spaces, fail for 1-foliated surface pairs \((X,\mathcal {F})\) with canonical singularities in characteristic \(p>0\).
期刊介绍:
Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.