{"title":"利用金属氧化物半导体电子鼻结合长短期记忆特征提取法评估鱼粉新鲜度。","authors":"Pei Li, Zhaopeng Li, Yangting Hu, Zhiyou Niu, Zhenhe Wang, Hua Zhou, Xia Sun","doi":"10.1111/1750-3841.17231","DOIUrl":null,"url":null,"abstract":"<p>To improve the classification and regression performance of the total volatile basic nitrogen (TVB-N) and acid value (AV) of different freshness fish meal samples detected by a metal-oxide semiconductor electronic nose (MOS e-nose), 402 original features, 62 manually extracted features, manually extracted and selected features by the RFRFE method, and the features extracted by the long short-term memory (LSTM) network were used as inputs to identify the freshness. The classification performance of the freshness grades and the estimation performance of the TVB-N and AV values of fish meal with different freshness were compared. According to the sensor response curve, preprocessing and feature extraction steps were first applied to the original data. Then, five classification algorithms and four regression algorithms were used for modeling. The results showed that a total of 30 features were extracted using the LSTM network, and the number of extracted features was significantly reduced. In the classification, the highest accuracy rate of 95.4% was obtained using the support vector machine method. In the regression, the least squares support vector regression method obtained the best root mean square error (RMSE). The coefficient of determination (<i>R</i><sup>2</sup>), RMSE, and relative standard deviation (RSD) between the predicted value of TVBN and the actual value were 0.963, 11.01, and 7.9%, respectively. The <i>R</i><sup>2</sup>, RMSE, and RSD between the predicted value of AV and the actual value were 0.972, 0.170, and 6.05%, respectively. The LSTM feature extraction method provided a new method and reference for feature extraction using an E-nose to identify other animal-derived material samples.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of fish meal freshness using a metal-oxide semiconductor electronic nose combined with the long short-term memory feature extraction method\",\"authors\":\"Pei Li, Zhaopeng Li, Yangting Hu, Zhiyou Niu, Zhenhe Wang, Hua Zhou, Xia Sun\",\"doi\":\"10.1111/1750-3841.17231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the classification and regression performance of the total volatile basic nitrogen (TVB-N) and acid value (AV) of different freshness fish meal samples detected by a metal-oxide semiconductor electronic nose (MOS e-nose), 402 original features, 62 manually extracted features, manually extracted and selected features by the RFRFE method, and the features extracted by the long short-term memory (LSTM) network were used as inputs to identify the freshness. The classification performance of the freshness grades and the estimation performance of the TVB-N and AV values of fish meal with different freshness were compared. According to the sensor response curve, preprocessing and feature extraction steps were first applied to the original data. Then, five classification algorithms and four regression algorithms were used for modeling. The results showed that a total of 30 features were extracted using the LSTM network, and the number of extracted features was significantly reduced. In the classification, the highest accuracy rate of 95.4% was obtained using the support vector machine method. In the regression, the least squares support vector regression method obtained the best root mean square error (RMSE). The coefficient of determination (<i>R</i><sup>2</sup>), RMSE, and relative standard deviation (RSD) between the predicted value of TVBN and the actual value were 0.963, 11.01, and 7.9%, respectively. The <i>R</i><sup>2</sup>, RMSE, and RSD between the predicted value of AV and the actual value were 0.972, 0.170, and 6.05%, respectively. The LSTM feature extraction method provided a new method and reference for feature extraction using an E-nose to identify other animal-derived material samples.</p>\",\"PeriodicalId\":193,\"journal\":{\"name\":\"Journal of Food Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17231\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1750-3841.17231","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Evaluation of fish meal freshness using a metal-oxide semiconductor electronic nose combined with the long short-term memory feature extraction method
To improve the classification and regression performance of the total volatile basic nitrogen (TVB-N) and acid value (AV) of different freshness fish meal samples detected by a metal-oxide semiconductor electronic nose (MOS e-nose), 402 original features, 62 manually extracted features, manually extracted and selected features by the RFRFE method, and the features extracted by the long short-term memory (LSTM) network were used as inputs to identify the freshness. The classification performance of the freshness grades and the estimation performance of the TVB-N and AV values of fish meal with different freshness were compared. According to the sensor response curve, preprocessing and feature extraction steps were first applied to the original data. Then, five classification algorithms and four regression algorithms were used for modeling. The results showed that a total of 30 features were extracted using the LSTM network, and the number of extracted features was significantly reduced. In the classification, the highest accuracy rate of 95.4% was obtained using the support vector machine method. In the regression, the least squares support vector regression method obtained the best root mean square error (RMSE). The coefficient of determination (R2), RMSE, and relative standard deviation (RSD) between the predicted value of TVBN and the actual value were 0.963, 11.01, and 7.9%, respectively. The R2, RMSE, and RSD between the predicted value of AV and the actual value were 0.972, 0.170, and 6.05%, respectively. The LSTM feature extraction method provided a new method and reference for feature extraction using an E-nose to identify other animal-derived material samples.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.